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Integrated molecular characterisation of the
MAPK pathways in human cancers reveals
pharmacologically vulnerable mutations and
gene dependencies
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The mitogen-activated protein kinase (MAPK) pathways are crucial regulators of the cellular

processes that fuel the malignant transformation of normal cells. The molecular aberrations

which lead to cancer involve mutations in, and transcription variations of, various MAPK

pathway genes. Here, we examine the genome sequences of 40,848 patient-derived tumours

representing 101 distinct human cancers to identify cancer-associated mutations in MAPK

signalling pathway genes. We show that patients with tumours that have mutations within

genes of the ERK-1/2 pathway, the p38 pathways, or multiple MAPK pathway modules, tend

to have worse disease outcomes than patients with tumours that have no mutations within

the MAPK pathways genes. Furthermore, by integrating information extracted from various

large-scale molecular datasets, we expose the relationship between the fitness of cancer cells

after CRISPR mediated gene knockout of MAPK pathway genes, and their dose-responses to

MAPK pathway inhibitors. Besides providing new insights into MAPK pathways, we unearth

vulnerabilities in specific pathway genes that are reflected in the re sponses of cancer cells to

MAPK targeting drugs: a revelation with great potential for guiding the development of

innovative therapies.
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The mitogen-activated protein kinase (MAPK) pathways are
crucial cell signal transduction pathways that regulate
molecular processes such as cell proliferation, cell differ-

entiation, cell survival, cancer dissemination, and resistance to
drug therapy1,2. The MAPK pathways involve four main mod-
ules: the extracellular-signal-regulated kinase 1 and 2 (ERK1/2)
pathway (also known as the classical pathway), the c-Jun N-
terminal kinase (JNK) pathway, the p38 pathway and the ERK5
pathway1,3. Each of these modules is initiated by specific extra-
cellular signals that lead to the sequential activation of a MAP
kinase kinase kinase (MAPKKK), then a MAP kinase kinase
(MAPKK) which phosphorylates a MAP kinase (MAPK)1–3.
Subsequent phosphorylation of the MAP kinases results in the
activation of multiple substrates, including the transcription
factors that are effectors of cellular responses to MAPK pathway
activation1–4.

Over the last few decades, our understanding of the individual
MAPK signalling modules and their role in oncogenesis has
grown significantly and, along with this increased interest, con-
certed efforts to treat various tumours that display altered MAPK
signalling5–9. We now have many anti-cancer drugs that target
the components of the MAPK pathways, most of which have been
successful in treating cancers of, among other tissues, the skin and
kidney10–13.

Several genetic aberrations, including mutations in, and copy
number variations of, MAPK pathway genes have been identified
in human cancers, and several of the proteins encoded by these
genes are promising drug targets14–17. However, we still do not
have a complete understanding of the extent to which MAPK
pathways are altered across the entire spectrum of human can-
cers, and whether these alterations impact either disease out-
comes or the responses of tumours to anti-MAPK pathway drugs.

There is, therefore, a pressing need to identify cancer types that
harbour mutations in genes that encode MAPK pathway proteins.
By extension, a better understanding of how genetic alterations
and gene dependencies within cancer cells impact the responses
of these cells to anti-cancer drugs will aid in rationally selecting
the best available drugs for treating particular cancers. Further-
more, a better appreciation of the specific MAPK pathway
aberrations in different human cancers would likely translate to
improved disease outcome predictions because some of the
genetic alterations of cancer cells are likely to be directly asso-
ciated with disease aggressiveness and clinical outcomes.

The large-scale molecular profiling of human cancers such as
has been carried out by The Cancer Genome Atlas (TCGA18)
project and other consortia and compiled by the cBioPortal
project19, has yielded vast amounts of publicly accessible data that
can be leveraged to understand the complexity of MAPK sig-
nalling in human cancers. Further, the Achilles project is pro-
cessing and releasing data on gene dependencies in hundreds of
cancer cell lines, as determined using high-resolution fitness
screens of cells following the knockout of particular genes using
CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats)20. In addition, the Genomics of Drug Sensitivity in
Cancer (GDSC21) project and the Cancer Cell Line Encyclopaedia
(CCLE22,23) project has screened, and continue to screen, the
sensitivity of thousands of human cancer cell lines to hundreds of
diverse small molecule inhibitors.

The efforts of the TCGA, Achilles, GDSC and CCLE projects
are complemented by the library of integrated cellular-based
signatures (LINCS) project which aspires to illuminate the
responses of complex cellular systems24,25 to drug perturbation.
The LINCS project provides datasets detailing the molecular and
functional changes that occur in thousands of different human
cell types following their exposure to thousands of drugs and/or
genetic perturbations25,26.

The large scales and the public accessibility of the datasets that
these projects are producing provide new prospects for us to link
cancer phenotypes to molecular features, clinical outcomes, and
the drug responses of tumours. Here, by integrating information
extracted from these datasets, we provide a comprehensive ana-
lysis of MAPK pathways across different cancer types. Besides
providing novel biological insights into the mutational landscape
of MAPK pathway genes, and how these affect disease outcomes
in cancer patients, we show both the specific MAPK pathway
genes that impact the fitness of cancer cells and how vulner-
abilities exposed by mutations and transcriptional changes in
these genes are reflected in the responses of cancer cells to MAPK
pathway inhibitors.

Results
The mutational landscape of MAPK pathway genes. Based on
the available literature and the KEGG pathway database27, we
first identified a list of all genes encoding members of the ERK1/2,
JNK, p38 and ERK5 pathways. This list consisted of 142 genes
that function mainly through the MAPK pathways as core genes
of the ERK5 pathway (14 genes), the JNK pathway (52 genes), the
p38 MAPK pathway (45 genes) and the ERK1/2 pathway (73
genes) (Supplementary File 1).

We then calculated the somatic mutation frequencies in these
142 genes as determined in 192 cancer studies focusing on 101
different human cancer types and involving 40,848 patients
(Supplementary File 1). The mutation frequencies for different
genes ranged from 0.05% for the CDC42 gene to 34% for the
TP53 gene. Other genes with high frequencies of mutations across
the 40,848 patient samples were KRAS (10%), BRAF (6%) and
NF1 (5%; see Supplementary File 1 for the MAPK pathway gene
mutations frequencies). These mutation frequencies are broadly
consistent with previous reports involving smaller cohorts of
~10,000 TCGA tumours of a variety of different cancers, which
indicated that, among receptor tyrosine kinase and ERK1/2
pathway genes, KRAS (9% across all samples) is the most
frequently altered gene, followed by BRAF (7%)17,28.

Although we found that the frequencies of MAPK pathway
gene mutations are low when we considered the frequencies
across all cancer types, we also found that the frequencies of
mutations in some MAPK pathway genes were exceptionally high
in some cancer types (Fig. 1, see Supplementary Fig. 1 for the
complete connectivity of the MAPK proteins, also see Supple-
mentary File 1). For instance, all esophagogastric cancer samples
have TP53 mutations, whereas 85% of pancreatic cancer samples
have KRAS mutations, and 85% of the pilocytic astrocytoma
samples have BRAF mutations. The oncogenes that were most
frequently mutated in these tumours encode vital proteins that
could be targeted to kill cancer cells selectively29,30. It is now
known that despite the complexity of the mutational, epigenetic,
and chromosomal aberration landscapes found across cancer
cells, the survival of these cells remains dependent on the
signalling functions of these frequently mutated MAPK pathway
genes29–31.

Overall, we found mutations in MAPK pathway genes in 58%
of all tumours. Here, of the four major MAPK pathway modules,
the JNK pathway (42.1% of the tumours) and the p38 pathway
(40.3%) showed the highest frequencies of MAPK pathway gene
mutations, followed by the ERK1/2 pathway (33.7%) and the
ERK5 pathway (6.1%); (Fig. 1). The TP53 mutations accounted
for over 28% of all the gene mutations in samples with JNK and
p38 pathways mutations. By excluding TP53 mutations from our
counts, we found JNK pathway mutations in 14.0% of all tumours
and p38 pathway mutations in 11.3% of all tumours. We excluded
the TP53 mutations from our downstream analyses because of the
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high impact of TP53 mutations on the frequency of JNK and p38
pathway gene alterations. Furthermore, we found that 11%
(4603 samples) of all the tumours harboured mutations in genes
involved in more than one of the four MAPK pathway modules
(Fig. 2a and Supplementary Fig. 2a).

Furthermore, we found mutations in genes that encode
multiple classes of MAPK proteins in 15% (6481) of the patent
samples (Fig. 2b). Among the genes that encode various classes of
MAPK pathway proteins, the GTPase encoding genes (14.2%)
showed the highest mutation frequencies, followed by the “other
protein” encoding genes (13.2%) and the MAPKKK genes (12.7%;
Fig. 1b).

Remarkably, we found that for most cancer types patient
tumours tend to have high mutation frequencies in genes
involved in either the ERK1/2 pathway or the p38 and JNK
pathways, but rarely in the genes involved in both the ERK1/2
pathway and p38 and/or JNK pathways (Fig. 2c and Supplemen-
tary Fig. 2b).

Among the 101 cancer types that we analysed, we found that
the extent to which the MAPK pathway genes were mutated
varied (Supplementary File 1). The percentage of tumours with
mutations ranged from 0% in small cell carcinomas of the ovary
to 93% in pilocytic astrocytoma (Supplementary File 1).

Disease outcomes are impacted by which MAPK pathways have
mutated genes. We examined whether the mutations in MAPK
pathway genes regardless of any other covariates are associated
with different clinical outcomes. Interestingly, we found that the
median duration of overall survival (OS) for patients with
mutations in MAPK pathway genes (OS= 73.0 months) was

significantly shorter (p= 6.89 × 10−8; log-rank test32) than that of
patients with no mutations in MAPK pathway genes (OS=
81.2 months; Fig. 2d). However, we observed that disease-free
survival (DFS) periods were similar (log-rank p-value= 0.455) for
cancer patients with mutations in MAPK pathway genes (unde-
fined median DFS period in that >50% of patients survived
beyond the study duration) and those with no mutations in these
genes (median DFS= 123.8 months; Fig. 2e). This observed
impact of mutations in MAPK pathway genes on OS is consistent
with previous ovarian, acute lymphoblastic leukaemia, and col-
orectal cancer studies which have reported that activation of the
MAPK pathways is associated with worse clinical outcomes33–36.

Next, we compared the duration of the OS and DFS periods
between groups of patients with tumours that had: (1) mutations
in genes of only one of the four MAPK pathway modules (i.e., the
ERK1/2, ERK5, p38 or JNK pathways), (2) in genes of more than
one of the MAPK pathway modules (3) or with no mutations in
any MAPK pathway genes. We found that patients of these
different subgroups exhibited dissimilar OS (log-rank p= 1.51 ×
10−39; Fig. 2f) and similar DFS (log-rank p= 0.0694; Fig. 2g)
period durations. We found that patients with tumours that
had mutations in JNK pathway genes had the most favourable OS
(median survival= 141.7 months) and DFS (undefined median
DFS) outcomes, a finding that is consistent with other studies that
have shown an association between alterations in JNK pathway
genes and both enhanced apoptosis37–39 and improved survival
outcomes37,38,40 (Fig. 2f, g). In contrast, patients with tumours
that had mutations in genes of the ERK1/2 pathway exhibited
the worst outcomes (median survival= 58.6 months; Fig. 2f).
Furthermore, we found no significant difference in OS outcomes
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Fig. 1 Mutations of MAPK pathway genes. The nodes represent genes of the four MAPK pathway modules (the ERK1/2, p38, JNK and ERK5 pathways).
The outline colours represent the classes of MAPK proteins that are encoded by particular genes, as shown on the left side of the figure. The abbreviations
are as follows: GEFs guanosine exchange factors, GTPase Guanosine triphosphatase, MAPKKKK mitogen-activated protein kinase kinase kinase kinase,
MAPKKK mitogen-activated protein kinase kinase kinase, MAPKK mitogen-activated protein kinase kinase, MAPK mitogen-activated protein kinase, DUSP
dual-specificity phosphatase, Other; proteins other than those described above. Node colours represent the frequencies of gene mutations, and their
increasing colour intensities denote higher percentages of tumours with mutations in genes encoding MAPK pathway proteins. In order clearly show the
cancer-type mutations in the MAPK genes, we have presented the maximum gene alteration seen specific cancer types for each gene. This is because the
mean gene mutation frequencies do not show how certain cancer types tend to have mutations in different MAPK genes. Additional, both the mean
gene mutations across cancer types and the cancer-type maximum mutation rate in each specific MAPK pathway gene are given in Supplementary File 1 in
the sheet named “Specific MAPK Gene Mutations”. Edges indicate known types of interaction: red for inhibition, black arrows for activation, dotted lines for
physical protein-protein interactions and green lines for interaction with scaffold proteins. To make the visualisation clearer, we have omitted some
interactions between some network nodes. See Supplementary Fig. 1 for the complete connectivity network of all the MAPK pathway proteins.
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for patients with tumours that had mutations in the MAPK
pathway module genes of the ERK1/2 pathway (median survival
= 58.6 months) versus those of the ERK5 pathway (60.7 months;
p= 0.4); the ERK1/2 pathways genes versus those of the p38
pathway (59.1 months; p= 0.078); and the ERK5 pathway genes
versus those of the p38 pathway (p= 0.74; Fig. 2f; also see
Supplementary File 2 for all pairwise comparisons).

Furthermore, we compared the durations of OS and DFS
periods between groups of patients that had tumours with
mutations in genes that encode specific protein classes involved in
the MAPK pathways. Here, we found that patients segregated
into these different protein class subgroups also exhibited
distinctive durations of OS (log-rank p= 2.23 × 10−46; Fig. 2h)
and DFS (log-rank p= 3.83 × 10−7; Supplementary Fig. 2c). For

the OS periods, patients with tumours that only had mutations in
the GTPase class of genes (median survival= 32.6 months),
exhibited the worst outcomes. In contrast, patients with tumours
that had mutations in the MAPKK encoding genes (median
survival= 131.7 months) exhibited the most favourable outcomes
(Fig. 2h; also see Supplementary File 2 for all pairwise
comparisons).

Our results, therefore, demonstrate an association in patient
tumours between specific MAPK pathway gene mutations and
disease aggressiveness.

Cancer cells are dependent on MAPK pathway genes for their
survival. The purposeful disruption of genes in human cells

Fig. 2 Mutations of the MAPK pathways across cancer types and disease outcomes. a Pie chart indicating the proportions and the actual numbers of
mutations within the genes of each MAPK pathway signalling module (ERK1/2, p38, JNK and ERK5 pathway). Note: the “undefined group” relates to
tumour samples that were profiled by a targeted sequencing approach for which the sequencing panel included only some of the MAPK pathway genes
that are known (1) oncogenes, and/or (2) tumour suppressor genes, and/or (3) frequently mutated in cancer (please refer to the Methods section for
details). b Pie chart showing the proportions and the actual numbers of mutations to genes that encode different classes of MAPK proteins. c Clustering of
the 101 distinct cancer types based on the proportions of samples with mutations in each of the four MAPK signalling pathway modules (Excluding TP53
mutations). Redder colour intensities denote higher percentages of mutations. The clustergram was produced using unsupervised hierarchical clustering
with the cosine distance metric and complete linkage. The coloured bars on the heatmap show the overall frequency of gene mutations within the samples
belonging to each cancer type represented within each column of the heatmap. Kaplan–Meier curve of the overall survival periods (d) and disease-free
survival periods (e) of patients afflicted with tumours with and without mutations in MAPK pathway genes. Kaplan–Meier curve of the overall survival
periods (f) and disease-free survival periods (g) of patients with tumours that have mutations to genes of only a single MAPK signalling pathway module
(ERK1/2, p38, JNK and ERK5 pathway), mutations in genes of multiple MAPK signalling pathway modules, and no mutated MAPK pathway genes. The
numbers in parenthesis show the median OS or DFS periods. NaN (Not a Number) represent undefined median OS or DFS period in that >50% of patients
survived beyond the study duration. h Kaplan–Meier curve of the overall survival periods of patients with tumours that have mutations to genes that
encode the various classes of MAPK proteins.
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remains an integral approach to elucidating gene functions. Such
an approach also holds great promise for finding therapeutic
targets for combating diseases such as cancer. To identify genes
that impact the fitness of cancer cells, we analysed the fitness
impacts of CRISPR-based MAPK pathway gene knockouts car-
ried out by the Achilles project20 on 688 cancer cell lines drawn
from 28 different tissues.

We found that cancer cell lines are significantly more
dependent (i.e., they lose a higher degree of fitness after gene
knockout) on having functional ERK1/2 pathway genes than they
are dependent on having functional ERK5, p38, and JNK pathway

genes (Fig. 3a). We found eight MAPK pathway genes (including
MYC, WNK1 and PXN) that are classifiable as “common
essential” (see the “Methods” section) among all cancer cell lines
(Fig. 3a, b; Supplementary File 3). Recent studies show that, in
malignant cells, the expression of theMYC oncogene is crucial for
cancer cells to colonise organs at the expense of less performant
neighbours. As a consequence of this, a functional MYC gene is
necessary for the survival and clonal expansion of tumorous
masses41–43.

We also identified another 40 MAPK pathway genes (including
MAPK1, BRAF and MAPK14) that are classifiable as “strongly
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selective” (see the “Methods” section) across various cancer cell
lines. Here, unlike some genes which were found to be non-
essential (i.e., genes that when knocked out do not affect the
fitness of cells), all MAPK pathway genes impact the fitness of the
688 cell lines tested.

We found that overall, the fitness of the cell lines was more
highly dependent (ANOVA F-value= 1365, p < 1 × 10−300) on
the functionality of known oncogenes (both those of the MAPK
pathway and those of other pathways) than on the functionality
of known tumour suppressor genes (TSG; Supplementary Fig. 3a).
Remarkably, we found that the fitness of these cell lines increased
to a significantly greater degree when TSGs of the MAPK
pathway were knocked-out compared to when any other known
TSGs were knocked-out (Welch t-test, Bonferroni adjusted
p-value= 5.4 × 10−285; Supplementary Fig. 3a). Here, our find-
ings emphasize that cellular processes such as cell proliferation,
cell differentiation, cell survival, and cancer dissemination, which
are all driven by the MAPK pathway, are essential determinants
of cancer cell fitness1–4,44,45.

Next, for cancer cell lines of various human cancer types, we
compared the mean cell fitness dependency scores (derived using the
CRISPR screens) between genes of each of the four MAPK pathway
modules against all other genes expressed in these cells. Here, we
found that ten cancer types (including those of the lung [Welch
t-test, t= 5.4, p= 7.7 × 10−8], skin [t= 9.8, p= 1.14 × 10−21] and
brain [t= 7.3, p= 3.35 × 10−13]) were significantly more dependent
on signalling through the ERK1/2 pathway than were other cancer
cell types (Fig. 3c; Supplementary File 3). Surprisingly, we found that
when the oncogenes of the ERK5 pathway were knocked out, 19 of
the 28 cancer types that are represented in the Achilles datasets
tended to have increased fitness (Fig. 3c). Also, we showed that
certain cancer types have a higher dependence on signalling through
various MAPK pathway modules compared to other cancer types
(Supplementary Fig. 4).

For cancer cell lines of various human cancer types, we
compared the mean cell fitness dependency scores between genes
that encode different classes of MAPK pathway proteins, against
all other genes expressed in these cells. Here, we found that 21
cancer types (including pancreatic cancer [Welch t-test, t= 6.4,
p= 1.1 × 10−9], bladder cancer [t= 6.5, p= 7.2 × 10−10] and
colorectal cancer [t= 6.9, p= 4.2 × 10−11]) are significantly more
dependent on GTPase encoding genes than they are in other
classes of genes (Supplementary Fig. 5a, b; Supplementary File 3).

Finally, by clustering the CRISPR-mediated gene knockout
data of the cell lines, we revealed a group of ERK1/2 pathway
genes that all adversely affect the fitness of cell lines in an
analogous manner (Fig. 3d; Supplementary Fig. 3b).

Gene essentialities are correlated with gene transcriptional
signatures. We compared the relationships between CRISPR-
determined gene dependency data and mRNA transcription,
DNA methylation and CNV data. Here, we found that the gene
essentiality signature of the cell lines is related to their mRNA
transcription signature (Fig. 4a). Therefore, we assessed the cor-
relation between the mRNA expression levels of all MAPK
pathway genes and their CRISPR-derived dependency scores and
uncovered a statistically significant negative correlation (R=
−0.32, p < 1 × 10−300; Fig. 4b). We also revealed that MYC, a
MAPK pathway gene on which most of the tested cell lines (671
out of 678) are dependent for their fitness, has self-mRNA
transcript levels that are negatively correlated across the tested
cell lines with CRISPR-derived dependency scores (Fig. 4c). This
suggests that MYC-driven endogenous cell competition likely
results in cells with higher MYC levels being selectively preserved
due to the apoptotic elimination of cells with lower MYC
levels41,42,46.

Since we found an overall negative correlation between the
mRNA expression levels and the gene dependence scores of the
MAPK pathway oncogenes, we hypothesised that the “common
essential” genes are likely to be highly expressed in cancer cell
lines. Therefore, we compared the mean transcript levels between
the “common essential” MAPK pathway genes and other MAPK
pathway genes and found that the “common essential” genes are
indeed significantly more highly expressed (Welch t-test; t= 99;
p < 1 × 10−300; Fig. 4d). This suggests to us that the high mRNA
transcript levels and the negative correlation between these levels
and CRISPR-derived dependency scores for the MAPK pathway
genes may represent a form of selective gene expression
amplification phenomenon similar to that displayed by MYC
during oncogenesis43,46–48.

Given that, among all of the MAPK pathway genes, KRAS and
BRAF were the most frequently mutated oncogenes, we focused
on the impacts of these two genes on cell fitness. We found that
pancreatic cancer cell lines, 85% of which present with KRAS
mutations, were significantly more dependent on KRAS than were
all other cell lines (t= 35.4, p= 2.8 × 10−178; Fig. 4e). Further-
more, we found that cell lines with KRAS mutations were
significantly more dependent on KRAS expression than were all
other cell lines (t= 34.7, p= 1.4 × 10−187). Here, also, we found
that skin cancer cell lines were significantly more dependent on
MAPK1 (t= 16.5, p= 1.33 × 10−55; Fig. 4f) and BRAF (t= 17.9,
p= 1.6 × 10−63; Fig. 4g) expression than were other cell lines.
Furthermore, we found that the cell lines with BRAF mutations
are more dependent on BRAF expression than were all other cell
lines (t= 19.5, p= 8.3 × 10−75; Fig. 4g). Overall, we observed that

Fig. 3 The dependence of cell lines on MAPK pathway genes. a CRISPR-derived gene dependencies of the MAPK pathway genes. The nodes represent
genes of the four MAPK pathway modules (the ERK1/2, p38, JNK and ERK5 pathways). Node colours represent the level of gene dependence, with
increasing colour intensities denoting increasing gene dependencies. Edges indicate known types of interaction: red for inhibition, black arrows for
activation and dotted lines for physical protein-protein interactions. Outline colours represent the classes of MAPK proteins that are encoded by genes, as
shown on the left side of the figure. see Fig. 1 for their descriptions. b Bar graph showing the number of cell lines that are dependent on each gene for their
fitness. Note: Fig. 3a shows the interacting MAPK protein names, whereas Fig. 3b shows the gene names. c Showing the comparisons of the mean
dependence scores for each cancer vs the pooled mean dependence scores of all other MAPK pathway genes across all cancer types. From left to right, we
show the dependence on the ERK1/2 pathway, JNK pathway, p38 pathway and ERK5 pathway of each cancer types compared to the pool dependence
scores of non-MAPK pathway genes across all 688 of the cancer cell lines (the green coloured boxplots). The grey boxplots denote no difference, the blue
boxplots denote loss of fitness, and the red boxplots denote increased fitness. P-values for each comparison was calculated with Welch’s t-test. Within
each box, the central mark denotes the median. The left and right edges of the box indicate the 25th and 75th percentiles, respectively. d An integrated plot
of gene dependencies in cell lines. From top to bottom, the panel indicates the overall Achilles dependence scores of a single gene per column; the class of
the MAPK pathway protein encoded by the gene; the MAPK pathway module in which the gene participates; and the clustergram of CRISPR-derived genes
dependence scores across the cell lines. Blue colours indicate reduced fitness and red colours increased fitness after CRISPR-mediated gene knockouts. The
clustergram was produced using unsupervised hierarchical clustering with the Euclidean distance metric and complete linkage (see Supplementary Fig. 3a).
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Fig. 4 Relationship between Achille gene dependence scores and other molecular profiling datasets. a Integrated plot depicting the relationship between
CRISPR-derived gene dependence scores and, from top to bottom, gene copy number variations; the DNA methylation profiles; the mRNA transcription
levels; and gene dependence scores. b Bar graph showing the statistically significant Pearson’s correlation scores between the mRNA expression levels of
oncogenes encoding MAPK pathway proteins and their corresponding gene dependence scores. c Pearson’s correlation between MYC proto-oncogene
mRNA expression levels and the CRISPR-derived MYC gene dependence score. d Comparison of mRNA transcript levels. e From left to right: correlation
between the KRAS transcript levels and the KRAS gene dependence scores, and the mean difference in the KRAS dependence between pancreatic cancer
cell lines (pancreatic cancers have the highest frequencies of KRAS mutations) and all other cancer cell lines; the mean difference in KRAS dependence
score between KRAS mutant cell lines and cell lines that do not harbour KRAS mutations. f Correlation between the MAPK1 transcript levels and the MAPK1
dependence scores, and the mean difference in MAPK1 dependence score between skin cancer cell line and all other cancer cell lines. g (Left) correlation
between BRAF transcript levels and BRAF dependence scores, and the mean difference in the BRAF dependence score between skin cancer cell lines (cancer
type with most BRAF mutations) and all other cancer cell lines. (Right) The mean difference in the BRAF dependence score between BRAF mutant cell lines
and cell lines that do not harbour BRAF mutations.
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CRISPR-mediated disruptions of KRAS, BRAF, and NRAS, was
associated with some of the most robust decreases in cellular
fitness. However, KRAS (R=−0.22, p= 9.3 × 10−9), BRAF (R=
−0.09, p= 0.03), and NRAS (R=−0.14, p= 0.0003) also
displayed weak negative correlations between self-mRNA levels
and their CRISPR-derived gene dependency scores (Fig. 4e, g, and
Supplementary Figure 3c). This suggests that in particular
cancers, for KRAS, BRAF, and NRAS, the major drivers of
oncogenesis are gene mutations rather than cellular mRNA levels.

Since the correlation between gene expression signatures and
CRISPR-derived gene dependency scores was unexpected, for
the 18,023 genes that had corresponding CRISPR-derived
gene dependency data, we evaluated the relationship between
the mRNA transcript levels and gene dependency scores. Here,
using mRNA transcription data of cell lines from the CCLE,
primary cancer tissues profiled by the TCGA, and normal tissues
profiled by the GTEx consortium49, we found an association
across different tissues between mRNA expression levels and the
degree to which CRISPR-mediated inactivation of all the 18,023
genes impacted the fitness of cell lines (Fig. 5a; Supplementary
Fig. 6a).

We found that various oncogenes and transcription factors
display a negative correlation, whereas TSGs show a positive
correlation between CRISPR-derived gene dependency scores and
self-mRNA levels (Fig. 5b; Supplementary File 4). Here, the
oncogenes and transcription factor genes that showed linear
correlations with associated Pearson’s correlation coefficient
values <−0.3 were enriched for, among others, biological
processes associated with regulation of transcription from RNA
polymerase II promoters and regulation of cell proliferation
(Supplementary Fig. 6b, Supplementary File 3). Alternatively, the
genes that showed linear correlations with an associated Pearson’s
correlation coefficient values > 0.3 were enriched for, among
others, biological processes that are associated with negative
regulation of the mitotic cell cycle phase transition and regulation
of G2/M transition of the mitotic cell cycle (Supplementary
Fig. 6c, Supplementary File 3).

Among the known oncogenes and transcriptions factors, IRF4
(R=−0.83, p= 4.5 × 10−171; Fig. 5c) showed the strongest
negative correlation, followed by SOX10 (R=−0.78, p= 1.5 ×
10−139; Fig. 5d). Conversely, CDKN1A (R= 0.47, p= 1.7 ×
10−38) showed the strongest positive correlation among the

Fig. 5 Relationship between Achille gene dependence scores and the mRNA transcriptional abundance of all the protein-coding genes. a Integrated
plot showing the relationship between CRISPR-derived gene dependence scores for over 18,000 protein-coding genes and the mRNA transcript levels of
these genes. From top to bottom: mRNA transcript levels of 10,534 primary tumour samples profile by the TCGA pan-cancer project; mRNA transcript
levels of 53 non-diseased tissue sites measured in nearly 1000 individuals by the GTEx consortium; mRNA transcript levels of 667 cell lines profiled by the
CCLE; Achilles CRISPR knockout fitness screens of 688 cell lines. b Histogram showing the overall correlation between gene dependence and the gene’s
self-mRNA levels. To aid visualisation, we used a bin size of 300 for genes (shown as “other genes”) that showed a Pearson’s correlation coefficient
between −0.3 and 0.3. In contrast, we used a bin size of 10 for the genes that showed a Pearson’s correlation coefficient of <−0.3 and or >0.3. Correlation
between gene dependence and the gene’s self-mRNA levels for c IRF4 transcription factor, d SOX10 transcription factor, and e the CDKN1A genes.
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known TSGs (Fig. 5e; Supplementary File 4). These results are
entirely consistent with our current understanding of cancer cell
biology in that we expect the disruption of an oncogene to reduce
the fitness of cancer cells, whereas we expect the disruption of a
TSG to increase the fitness of these cells50–52.

Altogether, these analyses revealed a relationship between the
extent of mRNA transcription and/or mutations in MAPK
pathway genes and the dependence of cancer cells on these
potentially dysregulated genes for survival.

The drug responses of cell lines to MAPK pathway inhibitors
are associated with the degree to which they depend on targeted
MAPK pathway components.

Given the association between the degree to which the fitness
of cancer cell lines depended on the functionality of different
MAPK pathway genes and the degree to which those genes were
expressed in these cell lines, we were interested in determining
whether CRISPR-derived measures of how dependent cells were
on MAPK pathway components correlated with cellular
responses to existing drug molecules that inhibited these
components. If such a correlation existed, it would mean that
CRISPR-derived measures of MAPK pathway gene dependence
would provide predictive power for identifying the best drug
targets within the MAPK pathways. Therefore, we retrieved, from
the GDSC database, the dose-responses of 344 cancer cell lines
representing 24 different human cancer types to 28 MAPK
pathway inhibitors (Supplementary File 4)21.

For each of the MAPK pathway genes, we grouped the cell lines
into two groups: those with a high degree of dependence on that
particular gene and those with low dependence on that gene (see
the “Methods” section). We then compared the mean dose-
response of the two cell-line groups using the drug response data
from the GDSC (see Fig. 6a). Further, we grouped the cell lines
into another two groups: those with mutations in a particular
MAPK pathway gene and those without mutations in that gene
(see the “Methods” section). Again, we then compared the dose-
response of the two groups using drug response data from the
GDSC (Fig. 6a and Supplementary Fig. 7a). Altogether these two
sets of comparisons revealed two critical insights that are of
relevance to the use of MAPK pathway inhibitors as cancer
therapeutics.

The first insight was that the responses of cell lines to MAPK
pathway inhibitors did indeed vary with the degree to which the
cell lines were dependent on particular MAPK pathway genes.
Specifically, we found that CRISPR-derived dependence scores of
15 genes were associated with significantly increased sensitivity of
cell lines to the MAPK pathway inhibitors, and the dependence
scores of twelve genes were associated with significantly decreased
sensitivity to these inhibitors (Fig. 6a). We also found that the
CRISPR-derived dependence scores of 18 other genes were
associated with mixed responses; i.e., significantly increased
sensitivity to some of the inhibitors and significantly decreased
sensitivity to others (Fig. 6a). Here also, for cell lines with higher
CRISPR-derived dependence scores to a specific MAPK pathway
gene, dependency on TSC1 was associated with significantly
increased sensitivity to the most (64%) MAPK pathway
inhibitors, followed by dependence on MAPK1 (48%) BRAF
(48%), and NRAS (46%; see Supplementary File 4). Conversely,
across the cell lines, dependence on DUPS8 was associated with
significantly reduced sensitivity to 28% of the inhibitors, followed
by dependence on TRAF6 (16%) and DUSP13 (8%), DUSP19
(8%), MAP2K3 (8%) and MAP3K3 (8%; see Supplementary
File 4).

The second insight was that the response of cell lines to MAPK
pathway inhibitors is also related to the specific mutations that
the cell lines carry in MAPK pathway genes. We found that
mutations in 41 genes were associated with significantly increased

sensitivity of cell lines to the MAPK pathway inhibitors, and 29
genes were associated with significantly decreased sensitivity
(Fig. 6a and Supplementary Fig. 7a). Here, mutations in another
24 genes were associated with mixed responses of the cell lines to
the MAPK pathway inhibitors, i.e., significantly increased
sensitivity to some of these inhibitors and significantly decreased
sensitivity to others (Fig. 6a and Supplementary Fig. 7a).
Furthermore, for cell lines with mutations in specific MAPK
pathway genes, mutations in the BRAF gene were associated
with significantly increased sensitivity to the most MAPK
pathway inhibitors (44%), followed by mutations in NRAS
(20%), MAP3K5 (20%), CRK (20%) and RASGRF1 (20%; see
Supplementary Fig. 7a and Supplementary File 4). Conversely,
across the cell lines, mutations in BCL2L11 were associated with
significantly decreased sensitivity to 24% of the inhibitors,
followed by mutations in TRAF6 (12%), PRKACA (12%),
and PTPN11 (12%; see Supplementary File 4).

Altogether, we found 543 instances where either a high
dependence on MAPK pathway genes, or mutations in MAPK
pathway genes, were significantly associated with variations in the
dose-responses of cancer cell lines to anticancer drugs (Fig. 6b).
Among the cell lines that are highly dependent on MAPK
pathway genes, we found 237 instances where the cell lines were
significantly more sensitive to MAPK pathway inhibitors and 143
instances where the cell lines were significantly more resistant to
these inhibitors (Fig. 6b). Furthermore, among the cell lines that
have mutations to specific MAPK pathway genes, we found 100
instances where cell lines were significantly more sensitive to
MAPK pathway inhibitors and 63 instances where cell lines were
significantly more resistant to these inhibitors (Fig. 6b). This then
indicates that a high degree of dependence on MAPK pathway
genes (480 total instances) influences the anticancer drug
responses of assessed cell lines to a greater degree than do
mutations within these cell lines (163 total instances).

Next, we classified the cancer cell lines into another two
categories; those with either a generally higher or lower CRISPR-
derived dependency on MAPK signalling (see the “Methods”
section). We then compared drug IC50 values between these two
cell line groups for the 28 MAPK pathway inhibitors. Remarkedly,
we found that the cell lines with higher MAPK gene dependency
were significantly more sensitive to eight out of the 28 MAPK
pathway inhibitors (Supplementary Fig. 7b; Supplementary File 4).
The inhibitors that exhibited the most significant difference in
their dose-responses between the two cell line groups were
refametinib (t= 5.5, p= 6.1 × 10−08), trametinib (t= 4.5, p=
9.7 × 10−06) and selumetinib (t= 4.5, p= 9.9 × 10−06), all of
which target MEK1 and MEK2 (Supplementary Fig. 7b; Supple-
mentary File 4). The cancer cell lines that have either a higher or
lower dependency on MAPK signalling are given Supplementary
File 4.

Finally, we classified the 25-cancer types represented within the
GDSC database into two categories: one with a higher CRISPR-
derived dependency on MAPK genes and the other with lower
dependency on these genes (see the “Methods” section). Again,
we compared the mean dose-responses of the 28 MAPK pathway
inhibitors between these two groups of cancer types. Here, we
found that 14 MAPK pathway inhibitors were significantly more
effective at killing cancers that had higher dependencies on
MAPK pathway genes than they were at killing cancers with
lower dependencies on these genes (t= 5.9, p= 1.5 × 10−51;
Supplementary Fig. 7c). The MAPK inhibitors that exhibited
the most significant differences in their efficacy between these
two groups of cancer types were PD0325901 (t= 5.6, p= 7.6 ×
10−09), selumetinib (t= 6.0, p= 2.9 × 10−08) and AZ628 (t= 5.2,
p= 6.9 × 10−08; Fig. 6c). Here, the MEK1/MEK2 inhibitors all
ranked in the top six (five out of the top six ranking inhibitors),
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Fig. 6 Relationship between Achille gene dependence scores or mutations of MAPK pathway genes and the responses of the cell line to MAPK
pathway inhibitors. a The integrated plot is showing the relationship between gene dependencies or mutations and drug responses across cancer cell lines.
From top to bottom panels indicate: the overall mutation frequencies observed for the gene along that column. Dependence; the overall CRISPR-derived
gene dependence scores of the gene along that column. Gene Class; the class of the MAPK pathway protein encoded by the gene. Pathway Module; the
MAPK pathway module in which the gene participates. Clustered heatmap; The marks on the heatmap are coloured based on how a high dependence on,
or mutations in, the gene along each column affect the efficacy of the drug given along each row: (1) with green (for gene dependence) and blue (for gene
mutations) denoting significantly (10% false discovery rate) increased sensitivity, (2) grey for no statistically significant difference between cell line with a
higher and lower dependence on the gene, and (3) orange (for gene dependence) and deep red (for gene mutations) denoting significantly increased
resistance. The gene names (column labels) are coloured based on the overall calculated effect that high dependence on the gene has on the efficacy of the
drug given along rows. Green; all the cell lines are significantly more sensitive to all the MAPK pathway inhibitors, orange; all the cell lines are significantly
more resistant to all the MAPK pathway inhibitors, and black; a mixed response to MAPK pathway inhibitors. The bar graphs represent the total numbers
of drugs whose dose-response are significantly increased (green/blue) or decreased (orange/deep red). b The total number of instances (from the
heatmap) for which cell lines are either significantly more resistant or more sensitive to MAPK pathway inhibitors broken down into the effect types (i.e.,
CRISPR dependency scores or gene mutations). c Comparison of the dose-response profiles to MAPK inhibitors between the cancer types with higher
dependence (boxplots with blue scatter point) on MAPK signalling and those with lower dependence (boxplots with red scatter point) on MAPK signalling.
The cancer types that have either a higher or lower dependency on MAPK signalling are given Supplementary File 4. Boxplots show the logarithm
transformed mean IC50 values of the cancer cell lines of each group. On each box, the central red mark indicates the median, and the bottom edge
represents the 25th percentiles, whereas the top edge of the box represents 75th percentiles. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the ‘+‘ symbol. The scatter point within each box plot shows the overall distribution of
the data points.
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revealing that cancers that were more dependent on functional
MAPK pathway genes were likely to exhibit stronger responses to
MEK1/MEK2 inhibitors than cancers that were less dependent on
functional MAPK pathway genes. Here, none of the cancer types
with a lower degree of dependency on MAPK pathway genes
displayed significantly more sensitive to any of the MAPK
pathway inhibitors than cancer types with higher degrees of
dependency on MAPK pathway genes (Fig. 6c; Supplementary
File 4). Moreover, previous studies have shown an association
between drug sensitivity and both the expression levels of targeted
proteins and/or the presence of alterations within these
proteins21–23,53–55. Here, we also show a clear correlation
between the gene dependencies and drug sensitivities of cancer
cell lines.

Overall, these discoveries emphasise that the extent to which
different cell lines or different cancer types are dependent on
MAPK signalling defines their responsiveness to drugs that target
the components of the MAPK pathway. This implies that
CRISPR-derived estimates of the degree to which different
MAPK pathway components contribute to cellular fitness are
clinically relevant predictors of how different primary tumour
types will respond to different MAPK pathway inhibitors.

Transcription responses of the MAPK pathway genes to MAPK
pathway inhibitors. Since we found that the responses of cell
lines to MAPK pathway inhibitors is related to their dependence
on the functionality of specific MAPK pathway genes, we hypo-
thesised that it should be possible to determine the exact cellular
changes that are associated with drug responses. Here, the mRNA
transcription patterns displayed by cells following their exposure
to MAPK pathway inhibitors should provide a clear representa-
tion of these cellular changes. To evaluate this hypothesis, we
used the publicly accessible LINCS dataset which details the
mRNA transcription patterns of ~1000 genes in cell lines25,26

following exposure of the cell lines to, amongst other small
molecules, seven MAPK pathway inhibitors. Here we focused on
the two cell lines (MCF7 and A549) and two MAPK pathway
inhibitors (selumetinib and PD-0325901; both of which target
mitogen-activated protein kinase kinase), that are common
between the LINCS datasets, and the GDSC or CCLE datasets.

We retrieved the dose-response profiles from the CCLE for
MCF7 and A549, to reveal that A549 (IC50=−1.481 μm) exhibits
a greater degree of sensitivity than MCF7 (IC50= 8.0 μm) to PD-
0325901 (IC50= 3.28; Supplementary Fig. 7d). Similarity, the
dose-response profiles from the GDSC for MCF7 and A549,
revealed that A549 (IC50= 0.171 μm) is more sensitive than
MCF7 (IC50= 8.0 μm) to selumetinib (Supplementary Fig. 7e).

Here, we found that changes in transcription in response to
selumetinib and PD-0325901 were positively correlated for both
A549 (R= 0.99, p < 1 × 10−300) and MCF7 (R= 0.92, p < 1 ×
10−300) cells (Fig. 7a). Surprisingly, we found that the mRNA
transcription signatures after treatment with selumetinib, and
PD-0325901 were also highly correlated when comparing the cell
lines to one another, despite A548 being substantially more
sensitive to these drugs than was MCF7 (Fig. 7b).

To understand this paradox, we subtracted the transcription
profile of the DMSO treated control from the transcription
profiles of the two cell lines following their treatment with
selumetinib or PD-0325901. Here, for A549 treated with either
selumetinib or PD-0325901, we found expression changes to
many genes, including a reduction in the mRNA levels of the
genes, MYC and WNK1 (Fig. 7c) which are defined by the
Achilles project as being “common essential” and the genes
KRAS, HRAS, and MAPKAPK2 which are defined by the Achilles
project as being “strongly selective” (Fig. 7c). Conversely, for

MCF7 treated with either selumetinib or PD-0325901, we
observed increased mRNA levels of WNK1 and MAPKAPK2,
whereas the mRNA levels of the NRAS and KRAS genes were
unchanged (Fig. 7c).

Our findings here are consistent with previous studies which
have shown that differences in the survival of different tumour
cells after drug perturbation can be at least partially explained by
differences between the transcriptional signatures of the tumour
cells20,56. What we have shown is that, in the context of cancer
cell lines responding to MAPK pathway inhibitors (and probably
also in the primary tumours from which these cell lines were
derived), such sensitivity differences are very likely attributable to
the extent to which the inhibitors reduce the expression and/or
functioning of key cell fitness associated MAPK pathway genes.

Discussion
We have conducted the most comprehensive analysis of the
MAPK pathways in 101 different human cancer types. Here, we
found at least one non-synonymous mutation to genes involved
directly in MAPK pathways in 42% (58% when TP53 mutations
are included) of all analysed samples. Previous studies have
examined the frequencies of alterations to various other cate-
gories of genes in tumours including those involved in metabolic
pathways (occurring in 100% of all tumours examined), the
transforming growth factor pathway (39%), the PI3K-mTOR
pathway (33%), the cell cycle pathway (33%), the p53 pathway
(29%), the MYC oncogene and its proximal network (28%), and
the Hippo pathway (10%)17,28,57,58. We have, therefore revealed
that, after metabolic gene alterations, alterations of MAPK
pathway genes are the most frequently observed category of
genetic changes associated with the onset of human cancers.

Our findings emphasize the significance of the MAPK path-
ways across most cancer types in promoting and coordinating the
proliferative capacity and immortality of cancer cells. Despite the
significance during oncogenesis of alterations in MAPK pathway
genes, it must be stressed that MAPK pathway gene alterations
are not found in 42% of tumours. These mutations are infrequent
in cancers such as small cell carcinoma of the ovary (occurring in
none of the 15 examined tumours), Ewing sarcoma (occurring in
3% of the 122 examined tumours) and myeloproliferative neo-
plasms (occurring in 5% of the 151 examined tumours). These
exceptions reinforce the notion that there exist multiple MAPK
pathway independent routes to oncogenesis59–63.

We showed that, on average, patients with tumours that har-
bour mutations in MAPK pathway genes tend to have sig-
nificantly worse OS outcomes than those without such mutations.
Since the MAPK pathway promotes tumour cell growth, pro-
liferation, resistance to drug therapy, and tissue invasion, it is
unsurprising that hyperactivation of this pathway can lead to
more aggressive disease1–4,6,8,14,64. We find, however, that this is
likely only the case for three of the four main MAPK pathway
modules in that patients with tumours that have mutations in
only JNK pathway genes on average tended to exhibit sig-
nificantly better disease outcomes (as adjudged by both OS and
DFS) than patients with tumours that have mutations in other
MAPK pathway modules (Fig. 2g). Given that the activation of
JNK signalling has a tumour suppressor role65–67 in many con-
texts (but a tumour promotor role in others contexts66–69), the
apparently enhanced survival of patients with tumours that have
JNK pathway gene mutations suggests that, whenever these
mutations have any impact on cancers at all, they may most
commonly promote anti-tumour activity.

We found a link between the most frequently mutated onco-
genes in various cancer types, e.g., KRAS mutations in pancreatic
cancer (Fig. 4e) and BRAF mutations in skin cancer (Fig. 4g) and
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the degree to which cancer cells depended on functional versions
of these genes for survival. Some of these dependencies (so-called
“Achille’s heels”) were noted before the era of large-scale
CRISPR-based gene editing and are already either targeted by
established chemotherapeutics or are being evaluated as targets
for future therapeutics70–73. Therefore, we suggest that the
CRISPR-based gene dependency screen performed by the Achilles
project could be leveraged to identify a host of other drug targets.

We also showed that cancer cells with mutations in particular
MAPK pathway genes respond more favourably to MAPK
pathway inhibitors than do those without mutations into these
genes (Fig. 6). Similarly, cell lines with a high degree of depen-
dency on MAPK pathway genes also exhibit better responses to
MAPK pathway inhibitors (Fig. 6) than cell lines that have a
lower degree of dependency on these genes. Here, just as others
have shown23,53,54,56, our findings have linked gene dependencies
and gene mutations to drug action. This underscores the notion
that we could devise better treatment strategies for many human
cancers by simply examining their: (1) MAPK pathway muta-
tional landscapes; (2) the mRNA expression levels of vital
oncogenic drivers; and (3) the degrees of the dependence of
cancer cells on these oncogenes. Here, our speculation is further
corroborated by our discovery, using the LINCS project datasets,
that reduced transcription of crucial oncogenes and/or tran-
scription factor genes are somewhat predictive of whether cancer
cells will be sensitive or refractory to a particular anti-cancer
drug. It should be interesting to unravel the signalling pathway
mechanisms that have knock-down effects on the expression of
genes that the Achilles project has identified as “common
essential” or “strongly selective” since these mechanisms would
also impact the responses of cancer cells to drug perturbation.

Altogether, we have revealed both the extent of mutations in
the MAPK pathway genes across more than 100 human cancer
types and the subset of these mutations that are most likely to
impact disease outcomes. Our integrative analysis of the CRISPR-
derived gene dependencies of cancer cell lines, together with the
drug responses of these same cell lines, indicates that the muta-
tions in, and expression signatures of, MAPK pathway genes are

associated with the responses of the cell lines to various MAPK
pathway inhibitors. It is apparent; therefore, that it should be
relatively straightforward to extend such an integrative analysis
approach to identify high-confidence drug targets for a broad
array of human cancers.

Methods
We analysed a dataset of 40,848 patient-derived tumours representing 101 distinct
human cancers, obtained from cBioPortal19 version 3.1.9 (http://www.cbioportal.
org; see Supplementary File 1 for details on the cancer studies). The elements of the
data that we obtained from cBioPortal include somatic gene mutations (point
mutations and small insertions/deletions), mRNA expression, and comprehen-
sively deidentified clinical data.

Not all types of data were available for all patients because of assay failures,
incomplete specimen availability and issues of quality with certain samples. Fur-
thermore, not all the MAPK genes were sequenced in all samples because some 15
of the 192 cancer studies were profiled using targeted sequencing. Here, all statistics
and results that we present are based on the subset of samples that have complete
data for each MAPK pathway gene, the genes of each MAPK pathway module, or
were applicable with at least a mutation within genes of a MAPK pathway module.

The mutational landscape of the MAPK pathway genes. Using the literature
and the KEGG pathways database27, we curated a list of 142 genes that encode
proteins that participate in the MAPK signalling pathway which included genes
involved in the ERK5 pathway (14 genes), the JNK pathway (52 genes), the p38
pathway (45 genes) and the ERK1/2 pathway (73 genes) (Supplementary File 1).

Next, we calculated the non-synonymous somatic mutation frequency
(including single nucleotide mutations, short indels and insertions) for each of
these genes across (1) all the samples and (2) each of the human cancer types
represented among the 40,848 samples (Supplementary File 1). Here, samples of 15
out of the 198 cancer studies that we analysed were profiled by a targeted
sequencing approach. These genes on the targeted sequencing panel of these
studies included most of the well-known oncogenes (e.g., KRAS, BRAF, MAPK1),
tumour suppressor genes (e.g., TP53 and TSC1), and the MAPK genes (e.g. NRAS,
and NF1) that have been previously found frequently mutated in human cancer.
Therefore, our calculated mutation frequencies of each gene involved the use of
only the samples that were profiled for that specific gene.

Furthermore, we calculated the frequency of non-synonymous somatic
mutations for groups of genes that participate in each of the four modules of the
MAPK pathway (the ERK1/2 pathway, the ERK5 pathway, the JNK pathway, and
the p38 pathway): firstly, across each of the cancer types and all the patient’s
samples (Supplementary File 1). Here, we allocated the samples that were profiled
using targeted sequencing to the “undefined” groups if no mutations were observed
in the targeted sequencing MAPK pathway’s gene panel. This is because we could

Fig. 7 Transcription responses of the MAPK pathway genes to MAPK pathway inhibitors. a Correlation between mRNA transcription response after
treatment with PD-0325901 and selumetinib for the (left) A549 cell lines and (right) the MCF7 cell lines. b Heatmap showing the transcriptome changes
of the A549 and MCF7 cell lines that occur after treatment of each cell line with either PD-0325901 or selumetinib for each repeat experiment done by the
LINCS project. c Clustered heatmap showing the transcription response of the “common essential” and “strongly selective” MAPK pathway genes after-
treatment of the A549 and MCF7 cell lines with either PD-0325901 or selumetinib.
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not concretely ascertain that these samples have no gene mutations in any of the
four MAPK pathway modules. Also, we calculated the frequency of somatic
mutations for groups of genes that encode the various classes of MAPK proteins
(e.g., MAPKKKs, MAPKs, DUSPs, and GTPases; see Fig. 1 and Supplementary
File 1 for details), firstly across each of the cancer types and then across all of the
patient’s samples.

Finding the association between the patients’ survival outcomes and the gene
mutations of the MAPK pathway in the patients’ tumours.

The Kaplan-Meier method32 was used to compare the durations of overall
survival (OS) and the durations of DFS between groups of patients that have
tumours with versus without mutations in the MAPK pathway genes. Here, we also
compared the OS and DFS durations for groups of patients with tumours that had:
(1) mutations in genes of only one signalling module of the MAPK pathway; (2)
mutations in genes of multiple MAPK signalling modules; and (3) with no
mutations in genes of the MAPK pathways (see Fig. 1a and Supplementary File 2).
In addition, we compared the OS and DFS durations for groups of patients with
tumours that had mutations in genes that encode: (1), only one class of MAPK
pathway proteins (e.g., MAPKKKs, or MAPKs); (2) multiple classes of the MAPK
pathway proteins; and (3) with no mutations in genes that encode any MAPK
pathway proteins (see Fig. 1b and Supplementary File 2). Note: we conducted all
the survival analyses without considering any of the covariates that are likely to
influence the OS and DFS outcomes of the cancer patients. Also, we exclude from
our survival analyses, the sample of the “undefined” groups (unknown mutation
status of the MAPK pathway module or MAPK pathway genes that encode specific
MAPK proteins).

Dependence of cell lines on MAPK signalling pathway genes. We obtained data
from the Achilles project at the DepMap Portal version 19Q420 on the fitness of
688 cell lines derived from 35 different human cancer types following CRISPR
knockouts of 18,333 individual genes. See https://depmap.org/portal/ for infor-
mation on the Achilles CRISPR-derived gene dependency descriptions.

In brief, regarding the CRISPR-derived gene effects: “a lower score means that a
gene is more likely to be dependent in a given cell line. A score of 0 is equivalent to
a gene that is not essential, whereas a score of −1 corresponds to the median of all
“common essential” genes”.

Within the database, the genes are grouped into four primary categories based
on observed cell line fitness after CRISPR-mediated gene knockouts as follows:

● Common essential genes are those genes “which, in a large, pan-cancer screen,
rank in the top X most depleting genes in at least 90% of cell lines. X is chosen
empirically using the minimum of the distribution of gene ranks in their 90th
percentile least depleting lines”.

● Strongly selective genes are those “whose dependency is at least 100 times
more likely to have been sampled from a skewed distribution than a normal
distribution (i.e. skewed-LRT value >100)”.

● Essential genes are those which are associated with cell fitness in only one or a
few cell lines, but whose dependency is <100 times more likely to have been
sampled from a skewed distribution than a normal distribution (i.e., less than
that of the strongly selective genes).

● Non-essential genes are those which show no effect on cell fitness in any of the
688 tested cell lines.

Here, we sought to evaluate the extents to which different cell lines are
dependent on MAPK signalling genes for their fitness. First, to unearth the cell line
dependencies on genes from each MAPK signalling module, we calculated the
percentage of genes within each MAPK pathway module that are “strongly
selective” or “common essential” across the cancer types that are represented by the
cell lines, and across all the cell lines (Supplementary File 3). Furthermore, to reveal
the dependencies of cell lines on specific classes of MAPK pathway genes (e.g.,
GTPases, MAKKKs, and MAPKs), we calculated the percentage of genes that
encode various classes of MAPK pathway proteins. Here, we only used genes
that categorised as either “strongly selective” or “common essential” across the cell
lines and cancer types that are represented by these cell lines in the Achilles
database.

Comparison of dependency of cell lines on oncogenes and tumour suppressor
genes. We processed the Achilles CRISPR-derived gene dependency data by first
annotating the oncogenes and TSGs using information from multiple sources.
These included: (1) the Sanger Consensus Cancer Gene Database74 (699 oncogenes
and TSGs); (2) the UniProt Knowledgebase75 (304 oncogenes and 741 TSGs); (3)
the TSGene database76 (1220 TSGs); and (4) the ONGene database77 (725 onco-
genes). We collated datasets from these four sources to yield a list of 3688 known
oncogenes and TSGs, representing 2932 unique genes (1021 Oncogenes and 1911
TSGs). We then used the list of oncogenes and TSGs to extract a list of: (1) MAPK
pathway genes that are oncogenes; (2) MAPK pathway genes that are TSGs; (3)
oncogenes that are not MAPK pathway genes; and (4) TSGs that are not MAPK
pathway genes. Next, we compared the mean CRISPR-derived gene dependence
scores for these four groups of genes using a one-way analysis of variance (Sup-
plementary Fig. 3b).

The essential MAPK pathway genes across cell lines. We counted the number
of instances in which the CRISPR-derived dependence score of each gene within
each cancer cell line was <−0.5 (the cut-off point that was devised by the Achilles
project to denote reduced cell fitness after CRISPR-mediated gene knockouts) to
find the number MAPK pathway genes that are associated with a reduction in cell
fitness across all the cell lines.

The dependence of cancer cells on each of the MAPK pathway genes. We
sought to identify precisely which human cancer types (as represented by the cell
lines) are significantly more dependent on oncogenes of each MAPK pathway
module compared to all other oncogenes. Here, we grouped the cell lines into
categories based on their primary tissue of origin. Then, focusing only on the
oncogenes of each MAPK signalling module, for each cancer type we compared the
mean CRISPR-derived dependence score of the oncogenes that were members of
each of the MAPK signalling modules to the pooled mean dependence scores of the
MAPK pathway genes across all the cancer cell lines (Fig. 3c; Supplementary
File 3). Furthermore, for each cancer type, we compared the mean CRISPR-derived
dependence score of the oncogenes for each MAPK signalling module to the mean
dependence score of the non-MAPK pathway oncogenes (Supplementary Fig. 4a).

Additionally, we compared mean CRISPR-derived dependence scores between
genes that encode classes of MAPK pathway proteins for each cancer type to the
mean pooled dependence scores of all other MAPK pathway oncogenes for all
other cancers (Supplementary Fig. 4b). Finally, for each different cancer types we
compared the mean dependence scores of genes that encode different classes of
MAPK pathway proteins to the pooled mean dependence scores of all non-MAPK
pathway genes (Supplementary Fig. 4c).

Hierarchical clustering of CRISPR fitness data of the cell line. To compare
patterns of gene dependencies between the 688 cell lines, we applied unsupervised
hierarchical clustering with a cosine distance metric using complete linkage to
CRISPR-derived dependence scores of the MAPK pathway genes.

Relationship between Achilles CRISPR-based fitness screens and the
transcription profiles, methylation profiles and copy number variation profiles of
cell lines.

We used the clustergram depicting the similarities and differences between the
CRISPR-derived MAPK pathway gene dependence scores of the different cell lines
to visualise the relationships between these dependence scores and: (1) the mRNA
transcription profiles of the cell lines; (2) the DNA methylation profiles of the cell
lines; and (3) the copy number variation profiles of the cell lines. Since the CCLE
has performed comprehensive molecular profiling of the cell lines that are
represented within the Achilles datasets, we retrieved the mRNA transcription,
DNA methylation and copy number variation data from this database. We then
arranged the genes represented in these datasets so that their order corresponds
with the pattern of clustering that was produced using the CRISPR-derived
dependence scores for each gene (Fig. 4a).

Correlation between genes essentialities and transcriptional signatures. We
applied unsupervised hierarchical clustering with a cosine distance metric using
complete linkage to CRISPR-derived dependence scores of all 18,023 genes (Sup-
plementary Fig. 5a) to reveal the clustering of these genes across cell lines. Next, for
these 18,023 genes, we retrieved data on: (1) the mRNA transcription levels of the
genes in 667 cancer cell lines from the CCLE; (2) the mRNA transcription levels of
these genes in 10,967 primary cancer samples from the TCGA database18; (3) and
the transcription levels of these genes in 53 normal human tissues measured in over
15,000 healthy individuals from GTEx consortium78. We then arranged the genes
in columns according to the clustering pattern of these genes based on their
CRISPR-derived dependency scores to visualize the relationships between the
mRNA gene expression levels of normal tissues, primary tumours and cancer cell
lines (see Fig. 5a; Supplementary Fig. 5).

Testing for an association between the MAPK pathway gene dependencies of
cell lines and the responses of cell lines to MAPK pathway inhibitors.

From the GDSC database, we retrieved the dose-responses for 344 cancer cell
lines of 30 different human cancer types to 28 drugs that target components of the
MAPK pathway (Supplementary File 4)21. These 28 drugs are hereafter referred to
as MAPK pathway inhibitors.

For each MAPK pathway gene (e.g., KRAS) we grouped the cell lines into two
groups: those with a high CRISPR determined dependence on that gene (e.g., a
KRAS dependence score <−0.5) and those with low dependence on that gene (e.g.,
KRAS dependence score >0.5). We then compared the IC50 values for each of the
28 MAPK pathway inhibitors between the two groups of cancer cell lines.
Furthermore, for each of the MAPK pathway genes, we grouped the cell lines into
another two groups: those with mutations in a particular gene (e.g., KRAS mutants)
and those without mutations in that gene (e.g., cell lines with no KRAS mutations).
Then we compared the IC50 values for each of the 28 MAPK pathway inhibitors
between the two groups (i.e., mutant and non-mutant) of cell lines.

Next, we counted the number of MAPK pathway genes that were either
“common essential” or “strongly selective” across each cell line. This gave us the
absolute number of MAPK pathway genes to which each cell line is most
dependent (Supplementary File 4). Here, we hypothesised that the cancer cell lines
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whose fitness is highly dependent on the MAPK pathway genes would
correspondingly exhibit a more robust response to the MAPK pathway inhibitors.
We, therefore, split the cell lines that are represented in the GDSC database into
two categories: (1) those which had more than the median number of MAPK
pathway genes that are “common essential” or “strongly selective” (these are the
cell lines with a higher MAPK pathway gene dependence) and (2) those which had
fewer than the median number of MAPK pathway genes that are “common
essential” or “strongly selective” (these are the cell lines with a lower MAPK
pathway gene dependence). Next, we compared mean IC50 values between these
two groups of cell lines of the 28 MAPK pathway inhibitors (Supplementary File 4).

We grouped the cell lines that are represented within the GDSC database based
on their primary tissue of origin. For each of these groups, we then calculated the
median number of MAPK pathway genes in the “common essential” or “strongly
selective”. We used this median value as a cut-off point to classify the cohort of
cancer types represented by the cell lines into two categories: those cancer types
with higher than the median number of “common essential” or “strongly selective”
MAPK pathway genes, and those with fewer than the median number of such
genes. We then compared the mean dose-responses between the cell lines in these
two groups to each of the 28 MAPK pathway inhibitors (Supplementary File 40).

Enrichment analysis. We performed gene set enrichment analysis for specific
Gene Ontology Biological Processes terms by querying Enrichr with the genes that
showed a Pearson’s correlation coefficient between self-mRNA and the CRISPR-
derived dependence score of either > 0.3 or <−0.3. (see Supplement File 3 and
Supplementary Fig. 5b, c)79.

Association between MAPK pathway gene dependencies and mRNA tran-
scription profiles following MAPK pathway inhibitor treatment. From the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE101406), we obtained mRNA transcription responses profiled by the
LINCS project80 for six cancer cell lines after small molecule inhibitor perturba-
tions. The elements of these data include the names and concentrations of the anti-
cancer drugs used to treat the six cell lines and the mRNA transcription responses
following drug treatment. Next, we used the Connective Map toolbox81 in
MATLAB to retrieve only the cancer cell lines with corresponding dose-response
profiles in the GDSC and CCLE database to the seven MAPK pathway inhibitors
that are represented within the LINCS dataset that we retrieved. We found that
only the cell lines, MCF7 and A549 when treated with the MEK inhibitors, selu-
metinib and PD-0325901 were common between the databases. We, therefore,
evaluated the MAPK pathway mRNA transcription signatures that occur after
selumetinib and PD-0325901 treatment in these two cell lines cognisant of the fact
these cell lines have different dose-response profiles to selumetinib and PD-
0325901 (see Fig. 7 and Supplementary Fig. 7).

Statistics and reproducibility. We performed all statistical analyses in MATLAB
2019b. Where appropriate, we used the independent sample Student t-test, Welch
test, the Wilcoxon rank-sum test and the one-way Analysis of Variance to compare
groups of continuous variables. All statistical tests were considered significant if the
returned two-sided p-value was <0.05 for single comparisons. Correcting for the
multiple hypotheses test was done by calculating a two-sided q-value (false dis-
covery rate) for each group/comparison using the Benjamini & Hochberg
procedure.

Ethics approval. The study protocol was approved by The University of Cape
Town; Health Sciences Research Ethics Committee IRB00001938. The publicly
available datasets were collected by the cBioPortal, TCGA, CCLE, Achilles, GDSC,
and LINCS projects and made available via their respective project databases. The
methods used here were performed following the relevant policies, regulations and
guidelines provided by the TCGA, CCLE, DepMap, GDSC, and LINCS projects.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support our results are available from the following repositories:
cBioPortal; https://www.cbioportal.org/, the Genomics of Drug Sensitivity in Cancer;
https://www.cancerrxgene.org/, the Cancer Cell Line Encyclopaedia; https://portals.
broadinstitute.org/ccle/data, the LINCS project; http://www.lincsproject.org, the
Genotype-Tissue Expression project; https://gtexportal.org/home/, the COSMIC
Consensus Cancer Genes; https://cancer.sanger.ac.uk/census, and the Project Achilles;
https://depmap.org/portal/. The pre-processed dataset can be found in the
Supplementary Data and are named as follows: Supplementary Data 1: Supplementary
data of cancer studies and mutations of the MAPK pathway genes; Supplementary
Data 2: Clinical outcomes across various groups; Supplementary Data 3: Achilles fitness
screens across the cancer cell lines of various cancer types; Supplementary Data 4: Dose-
response profiles of the cancer cell lines as profiled the GDSC and associated results of
the various statical test.

Code availability
Custom code written in MATLAB for processing and analysis of the data presented here
is freely available at https://github.com/smsinks/Integrated-Analysis-of-MAPK-Pathway-
Across-Human-Cancers and at http://doi.org/10.5281/zenodo.427450782. The repository
includes some pre-downloaded datasets and conversion files required for the analysis.
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