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Human visual search follows a suboptimal Bayesian
strategy revealed by a spatiotemporal
computational model and experiment

Yunhui Zhou® ' & Yuguo Yu® 12345

There is conflicting evidence regarding whether humans can make spatially optimal eye
movements during visual search. Some studies have shown that humans can optimally
integrate information across fixations and determine the next fixation location, however,
these models have generally ignored the control of fixation duration and memory limitation,
and the model results do not agree well with the details of human eye movement metrics.
Here, we measured the temporal course of the human visibility map and performed a visual
search experiment. We further built a continuous-time eye movement model that considers
saccadic inaccuracy, saccadic bias, and memory constraints. We show that this model agrees
better with the spatial and temporal properties of human eye movements and predict that
humans have a memory capacity of around eight previous fixations. The model results reveal
that humans employ a suboptimal eye movement strategy to find a target, which may
minimize costs while still achieving sufficiently high search performance.
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important for survival and requires planning of eye move-

ments both in space and time. Previous studies on human
eye movements have resulted in conflicting evidence as to whe-
ther these eye movements are spatially optimal!-°. The Bayesian
ideal searcher? and the closely related entropy-limit-minimization
(ELM) model! are two important optimal eye movement models
of multi-saccade visual search tasks. While some studies have
shown that human search performance and eye movement sta-
tistics are consistent with these optimal models!~3, humans seem
to make fewer long saccades (rapid eye movements between
fixation points) compared to the optimal models!. Moreover,
other studies have indicated that humans may rely more on
suboptimal strategies rather than calculating and planning opti-
mal eye movement for a specific task4~7. There is also evidence
for statistical dependencies between successive eye movements
during visual search8, but detailed comparisons to the optimal
models are still missing.

The Bayesian ideal searcher and the ELM model are optimal in
the sense of fully using the visibility map!-3, but they do not
consider other costs required to perform the task. For humans,
the assumption of unlimited memory capacity in these optimal
models is unrealistic, and making eye movements also has costs.
For example, longer saccades are less accurate and increase the
chances of making a secondary saccade’, take longer to finish!0,
and disrupt vision during saccade more severely!l. This may
explain why humans make fewer long saccades than the optimal
models!. With these constraints, it is unlikely that humans strictly
follow the optimal search rule. We therefore reconsidered the
question of how optimally humans search and ask if a visual
search model with more biological limitations could provide
more accurate predictions.

Moreover, the temporal control of eye movements has received
surprisingly little attention in visual search models. For example,
the Target Acquisition Model does not explain fixation dura-
tion!2; the Bayesian ideal searcher and ELM model assume each
fixation last for 250 ms!-3; and the Guided Search model assumes
fixation duration is 200-250 ms!3; whereas the fixation duration
observed in experiments usually ranges from 100 to 700 ms'4. We
found only one model of visual search that considered mean
fixation duration, but it could not simulate the whole distribution
of fixation duration!”. The lack of fixation durations in the above
models may reflect the view that visual search is more about
deciding fixation locations than fixation duration. However, since
it has been shown that there is interdependency between the
spatial and temporal control of eye movements®1%17, a complete
model of visual search should explain both aspects instead of
focusing on a single one.

Eye movements are typically viewed as sequence of decisions,
and fixation duration can be viewed as reaction time of a saccade
decision. Indeed, the distribution of fixation duration shows a
similar right-skewed shape to the reaction time distribution of
other decision-making tasks!8-20, Therefore, some models of
reading and scene viewing?!-24 capture the fixation duration
distribution by using the drift-diffusion model of decision-mak-
ing, which is widely used in explaining the reaction time dis-
tribution?>. The central idea is to accumulate information
stochastically within a fixation and trigger a saccade whenever the
accumulation reaches a threshold, and such accumulation process
can be observed in experiment?®. Although this approach is
successful, the accumulation process in these models are usually
simplified or artificial as they do not quantitatively measure the
dynamics of information accumulation within a fixation. Since
previous studies have shown that visual search task difficulty
affects fixation duration?”-28, we believe that the information
accumulation process should be explicitly measured according to

For animals with foveated retinas, efficient visual search is

the visual search stimulus used in the task, and the data can be
incorporated to previous optimal models!® based on signal
detection theory.

In this study, we experimentally measured the accumulation of
visual information within a single fixation and formulated a drift-
diffusion process that decides saccade timing. Combined with the
ELM model, we proposed a continuous-time eye movement
model that determines both fixation location and duration. We
find that human eye movement statistics are inconsistent with the
optimal models. Instead, adding constraints on saccade accuracy,
saccade amplitude and memory capacity improves the model’s
predictions of human eye movement statistics while still achiev-
ing a high search performance.

Results

Selecting target contrast. Ten student volunteers (six male, four
female) participated in the experiment. The stimulus image was a
Gabor target (6 cycle/degree, 0.3° in diameter) embedded in a
circular naturalistic background noise image (15° in diameter,
root-mean-squared (RMS) contrast 0.2) (Fig. la). To normalize
visual search difficulty across subjects, we first measured the
relationship between foveal target visibility (4" in signal detection
theory) and target RMS contrast. We presented two noisy images
for 250 ms each, and a randomly chosen image had the target at
the image center. The subjects needed to identify the image that
contained the target (Supplementary Fig. 1a). The target contrast
varied in each trial. The subjects’ correct response rate could be
well fitted by a Weibull function given the target RMS contrast
(Fig. 1b). We then fit the relationships between the hit and correct
rejection rates and the target RMS contrast with a Weibull
function, and mathematically described the relationship between
the target RMS contrast and d’ (Eq. (2), Fig. 1c). For each par-
ticipant, we selected the target RMS contrast that yielded d' = 3.0
(Fig. 1c). The selected contrast ranged from 0.111 to 0.135, with a
mean value of 0.125.

Temporal course of target visibility. We then measured how the
target visibility changed over time within one fixation across the
visual field. We again presented two noisy images to the subjects,
but this time, the target contrast was fixed to the selected value for
each subject, and the stimulus presentation time and target
location varied across trials. Before the start of each trial, the
target location was cued, and the subjects needed to keep fixating
on the image center throughout the trial. The task was to identify
the image that contained the target at the cued location (Sup-
plementary Fig. 1b). Four of the ten subjects performed this
experiment, and the trials were pooled together to calculate the
visibility at each combination of the visual field locations and
stimulus presentation times.

We next built an evidence accumulation model that could
generate this measured visibility map. The model assumed that in
each short time interval, the visual system received a small
normally distributed random sample of visual information at
each location (Eq. (3)), and these samples were integrated over
time in a leaky manner (Eq. (6)). This produced a drift-diffusion
process, and the distribution at each time point could be
analytically described (Egs. (7)-(9)). According to signal detec-
tion theory, visibility (d’) is the separation between the noise and
target + noise distributions in units of their common standard
deviation (SD)2, therefore the temporal course of visibility could
be described (Egs. (10)-(12)).

In all subjects, the target visibility first increased as a function
of stimulus presentation time and then reached stable peak values
(Supplementary Fig. 2). The steady-state foveal visibility was close
to the predefined value of 3.0. The steady-state and rising speed of
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Fig. 1 Stimulus image and results of the detection task. a The stimulus image was a 1/f2 noise image (15° diameter, root-mean-squared (RMS) contrast
0.2) with an embedded target. The target was a 6 cycle/degree Gabor grating with a diameter of 0.3°, oriented 45° counterclockwise from the vertical and
windowed by a symmetrical raised cosine (half-height width of one cycle). The area outside the image was set to the mean gray value of the image (0.5,
not shown here). b, ¢ Detection rate (b) and foveal target visibility (¢) as a function of the target RMS contrast. Dots are raw data (one color per subject).
In b, the curves are the Weibull function fit to the dots. In ¢, the curves are calculated from Weibull functions fit to hit rates and the correct rejection rate of
the raw data (Eq. (1)). The intersection between the dashed line (d'=3.0) and the curves is the target RMS contrast chosen for each subject. d-i Target
visibility map at different stimulus exposure times in the detection task. The dots are raw data merged from four subjects. The surface is the fitted visibility
map function (Egs. (10)-(12)). Not all locations were tested in all exposure times so the number of dots may differ in each subplot. Hori/Vert: horizontal/
vertical dimension of the search field. Fixation location was at the center of search field.

visibility was higher in central than in peripheral visual field
(Supplementary Fig. 3). There was some individual variability on
the spatial span of visibility map (the ability to detect a distant
peripheral target), but the trend that central vision could detect
the target faster than peripheral vision was common. The
temporal course of visibility across the visual field could be
described by the evidence accumulation model after fitting to the
pooled data from all subjects (Fig. 1d-i).

Human eye movement strategy in visual search. We next per-
formed a visual search experiment using the same stimulus
images (Supplementary Fig. 1c) to compare the eye movement
data to visual search models. All ten subjects finished this task,
and they were split into training set (four subjects that measured
the temporal course of visibility) and testing set (the rest six
subjects). The quality of the eye-tracking data of all the subjects
was quite good. On average, the SD of the samples of 99.77% of
the fixations was below 0.4°, and the RMS of the inter-sample
angular distance of 99.50% of the fixations was below 0.03°
(Supplementary Fig. 4).

We used the ELM model of visual search as the baseline model
and it served as a replication of previous study'. To model eye
movements control both in space and time, we combined the
evidence accumulation model and the ELM model into a
continuous-time ELM (CTELM) model. Since several previous
studies have suggested that the control of fixation duration
depends more on foveal than peripheral visual analysis30-31, the
CTELM model terminates a fixation when the posterior

probability of target being at current fixation location drops
below a collapsing threshold (Fig. 2). The next fixation location
was chosen within 400 predefined locations (Supplementary
Fig. 5a) by maximizing the expected information gain of the next
fixation (Eq. (18)).

We also tested whether adding constraints to the CTELM
model (called the CCTELM model) could improve model’s
prediction on experiment data. Three constraints were consid-
ered: preference for short saccades, inaccuracy of saccade landing
position, and memory limitation. We applied a penalty function
(Eq. (26)) when calculating the expected information gain of the
next fixation to suppress the probability of choosing a distant
saccade target. The relationship between the bias and variance of
saccade landing position and saccade target eccentricity was
obtained from a previous study!® (Supplementary Fig. 6), and the
model could fixate at any location instead of the predefined 400
locations. We also considered a simple form of memory so that
the model could only integrate a fixed number of fixations when
calculating the posterior probability of target location (Eq. (24)).
Visual information prior to what the memory could hold was
discarded. The model’s goodness-of-fit was quantified by
calculating Bhattacharyya coefficient®? (B., Eq. (32)) of the
distributions of eye movement metrics. The parameters in the
models were fit to the training set and tested against the testing
set. We found that human eye movements predicted that the
memory capacity was about eight fixations (including the current
fixation). In the following sections we will show how we estimated
the capacity.
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Fig. 2 Schematic diagram of the continuous-time entropy-limit
minimization (CTELM) and constrained-CTELM (CCTELM) models. The
model starts each trial by fixating at the image center. Then, at each time
step, it accumulates the visual information sampled since the start of the
current fixation, and calculates the posterior probability map of target
location across the search field by Bayesian theory. If the posterior
probability of target being at current fixation location is larger than a target
detection threshold, the model will set the target location as the current
fixation location and terminate search. Otherwise, if the posterior
probability at current fixation location is lower than the saccade threshold,
it will saccade to a new location. If neither of the thresholds are met, the
model will continue the current fixation. The whole process iterates until
the model finds the target.

We first examined how the three models predict subjects’
spatial control of eye movements. In previous studies of similar
experiment, humans produced a doughnut-shaped fixation
location distribution peaked at about 5° from image center, and
fixated more at upper and bottom part of the imagel2. Our
subjects, however, fixated more uniformly across the image in
both correct (Fig. 3a) and error trials (Supplementary Fig. 7a).
More fixations were in the upper and bottom part and slightly
biased to the left part (Supplementary Fig. 8a, d). There was a
fixation hotspot located slightly above the image center (Fig. 3a),
which was caused by a large upward bias of the first saccade. The
ELM and CTELM models produced a sharp doughnut-shaped
distribution of fixation locations, whereas the CCTELM model
fixated more uniformly in both correct trials (Fig. 3b-d and
Supplementary Fig. 8b, c¢) and error trials (Supplementary
Figs. 7b-d and 8e, f). All the three models fixated more at the
upper and bottom part of the image, but unlike the subjects they
were not biased toward the left part of the image (Supplementary
Fig. 8a, d). Another important difference was that ELM and
CTELM models progressively fixated at the outer part of the
image as search continues, whereas the subjects’ and CCTELM
model’s fixation distance to image center was relatively stable
(Fig. 3e-j and Supplementary Fig. 7e—j). Therefore, the goodness-
of-fit of the CCTELM model was better and more stable than the
ELM and CTELM models (Fig. 3k and Supplementary Fig. 7k).

For the saccade amplitude, the two optimal models generated
more long saccades, whereas the CCTELM model and human
subjects preferred shorter saccades (Fig. 4a, b). The CCTELM
model could also consistently fit the saccade amplitude distribu-
tion as the search progressed (Fig. 4c, d and Supplementary
Fig. 9). Note that the CCTELM model generated more long
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Fig. 3 Fixation location distribution of subjects and models in correct trials. a-d Distribution of fixation location in the search field (inside the white

circle), lighter means higher density. The densities were obtained by smoothing the scatterplot of the fixation locations by a Gaussian window with a SD =
0.35° and then normalizing the maximum value in each subplot to one. e-j Fixation distance distribution to image center within the initial 11 fixations after
the first saccade. k Bhattacharyya coefficient (B.) between models’ and subjects’ distributions of fixation distance to image center of the initial 20 fixations
after the first saccade. Dots represent raw data; curves represent quadratic functions fitted to the dots.
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Fig. 4 Saccade amplitude distribution of the subjects and models. a, b Saccade amplitude histogram of all saccades in correct and error trials.

¢, d Bhattacharyya coefficient (B.) between the models’ and subjects’ saccade amplitude distribution of the initial 20 saccades in correct and error trials.
Dots represent raw data; curves represent fitted quadratic functions. See Supplementary Fig. 9 for the distribution of raw data at each ordinal position in
correct and error trials. e Relationship between the first saccade’s amplitude (SacAmp) in two consecutive saccades and the change in saccade direction
(SacDir) in all trials. f Relationship between the second saccade's amplitude in two consecutive saccades and the change in saccade direction in all trials.
g Relationship between the second and the first saccade’s amplitude in two consecutive saccades in all trials. h The distance between fixation location and
the target location as a function of the number of fixations before correctly finding the target. In panels e-h error bar represents 95% confidence interval.
For experimental data n = 6 subjects. The simulation results came from 100,000 independently simulated trials. The distribution of raw data in panels

e-h were shown in Supplementary Fig. 11.

saccades in the error trials than in the correct trials (Fig. 4a, b)
because the last saccade amplitude in the error trials was larger
than that in the correct trials (Supplementary Fig. 10). This
phenomenon occurred because the error trials were often caused
by transient noise in the model, so there was no strong
relationship between the saccade amplitude and the number of
saccades back before the final response, whereas in the correct
trials the fixation locations were gradually attracted to the target
location so the saccade amplitude decreased before the final
response. In addition, in a sequence of eye movements, the
change in the saccade direction after a saccade was usually larger
for the ELM and CTELM models than for the CCTELM model
and the subjects (Fig. 4e and Supplementary Fig. 11a). Both the
subjects and the three models tended to make larger saccades

after a larger change in saccade direction, but the slope of the
relationship was larger for the ELM and CTELM models than the
subjects and the CCTELM model (Fig. 4f and Supplementary
Fig. 11b). Moreover, the relationship between saccade amplitude
of two consecutive saccades from the CCTELM model was closer
to the subjects’ data than the ELM and CTELM models (except
for very long saccades) (Fig. 4g and Supplementary Fig. 11c).
Owing to the constraints in saccade amplitude, the CCTELM
model also approached the target slower than the ELM and
CTELM models and was closer to the subjects (Fig. 4h and
Supplementary Fig. 11d). In summary, the CCTELM model could
better reproduce the subjects” spatial control of eye movements.

We then examined how the three models predicted the
subjects’ temporal control of eye movements. Both the CTELM
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is the correct response rate.

P (correct)

Table 1 Average visual search performance of the two groups of subjects (training and testing set) and three models. P(Correct)

Median fixation number

Maximum fixation nhumber

Correct trials Error trials Correct trials Error trials
Training set 88.09% 7.5 39.3 176 158
Testing set 83.86% 1.5 42.5 181 428
ELM 87.57% 7 6 43 34
CTELM 88.15% 7 7 40 37
CCTELM 87.40% 8 8 125 102

and CCTELM models could predict the overall fixation duration
distribution (Fig. 5a, b), but the agreement was slightly better as
the search progressed in the CCTELM model (Fig. 5c, d and
Supplementary Fig. 12). We also checked whether adding
saccadic constraints influences the interaction between the spatial
and temporal control of eye movements. For the human subjects,
as the saccade amplitude increased, the next fixation’s average
duration first increased from ~225ms to ~300ms and then
rapidly decreased to ~120 ms when the saccades were larger than
10° (Fig. 5e). Both the CTELM and CCTELM models could
reproduce this relationship when the saccades were smaller
than 10° because part of the information at the new fixation
location had already been obtained from the previous fixation, so
the probability value at the new fixation location was closer to
the decision threshold (Supplementary Fig. 13). However, the
relationship deviated from the experimental data when the
saccade was large (Fig. 5e), which was probably due to the

presence of secondary saccades that were not implemented in the
model. In summary, the CCTELM model could reproduce
subjects’ temporal control of eye movements better than the
CTELM model.

Human visual search performance. The above analysis showed
that human eye movement statistics in visual search could be
better predicted by a suboptimal strategy with constraints on
saccade amplitude, saccade accuracy, and memory capacity. We
next compared the search performance of humans and the three
models. With the appropriate choice of target detection threshold
Or (Supplementary Table 1), the three models’ correct response
rate was similar to the subjects in training set (around 88.0%,
Table 1), but higher than subjects in the testing set (83.8%,
Table 1). This may be caused by individual variability of search
strategy and difference in prior training between the two groups
of subjects (see discussion).
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In terms of the distribution of fixation numbers needed to
correctly find the target, the subjects’ and the three models’ data
had a similar peak, but the subjects and the CCTELM model had
a higher probability of fixating more than 20 times (Fig. 6a). The
median fixation number in the correct trials was similar across
the three models and subjects in the training set (7-8 fixations),
but subjects in the testing set were 3-4 fixations slower (Table 1).
This discrepancy was not very large considering that the mean
fixation duration was ~250 ms. However, both groups of subjects
were much slower than the three models in error trials (Table 1),
and possible reasons will be discussed in the discussion section.
With respect to fixation number as a function of target
eccentricity, subjects in the training set performed closer to the
CCTELM model except that they were much slower when target
eccentricity was about 0.6° (Fig. 6b). Subjects in the testing
set also searched slower when target was distant (Fig. 6b). In
summary, the subjects’ search speeds were suboptimal, but they
could still keep a relatively low median fixation number.

As in previous studies!~3, we measured the visibility map with
the target location cue in the detection task; one may question the
validity of using it in the visual search task when there is no target
cue. We also measured the visibility map without the target
location cue in four subjects (Supplementary Fig. 14) and found
that the optimal model searched slower than the subjects
(Supplementary Fig. 15). Therefore, in theory, visibility map
measured without target location cue does not allow human-level
search performance. In the discussion, we also discuss our belief
that the visibility map measured without the target location cue
was probably not an accurate measure of the actual visibility map
in visual search.

The effects of memory and saccadic constraints. We have
shown that the CCTELM model agreed better with human visual
search eye movement metrics. The remaining questions were how
we estimated the memory capacity, and why these constraints
improved the model’s prediction. We have varied the CCTELM
model’s memory capacity and examined the goodness-of-fit to
the training set. Figure 7a shows that the distributions of fixation
distances to screen center and fixation location were most sen-
sitive to memory capacity, and the distributions of fixation
duration and saccade amplitude were less sensitive unless at
extreme values. Model with a low memory capacity fixated on the
central part of the image too often (Fig. 7c—j), and model with a
large memory capacity fixated more on the outer part of the

image as search progressed (Fig. 7k-r). On average, the matching
with the experimental data peaked when the memory capacity
was 8 fixations (Fig. 7a). Decreasing the memory capacity to 6-8
fixations did not greatly affect the mean fixation number needed
to find the target, and the discrepancy was only present when the
target was distant (Fig. 7b). In summary, a model with memory
capacity of 8 fixations could better predict the experiment data
while the search performance is only slightly affected. Therefore,
we choose 8 fixations as the memory capacity of CCTELM model.

We further checked the scan path of humans and models to
understand the effect of saccade amplitude penalty function.
Subjectively, the scan path looked similar when the target was
close and number of fixations was small, but difference emerged
when the number of fixations was larger (Fig. 8). The ELM and
CTELM models chose the location that maximize the expected
information gain as the next fixation location. In general, one can
get most information by fixating at novel regions and avoid
previously fixated regions. Therefore, both the ELM and CTELM
models tended to avoid image center (where the search starts)
and jumped between opposite sides of the search field (Fig. 8),
producing many long saccades (Fig. 4a, b) and larger change in
saccade direction (Supplementary Fig. 16). Adding constraint on
saccade amplitude prevent this behavior and forced the model to
make series of small saccades around the image to reach the other
side of the image (Fig. 8), so the change in saccade direction
decreased and was closer to humans’ behavior (Supplementary
Fig. 16).

Saccadic inaccuracy was introduced into the CCTELM model
to solve a subtle technical issue. Without saccadic inaccuracy, the
ELM and CTELM models could only fixate at the 400 predefined
locations. As these locations were uniformly sampled inside the
search field, the distances between two adjacent locations were
similar (Supplementary Fig. 5a). This made the distribution of
saccade amplitudes “discrete-like” when the amplitude was small
(Supplementary Fig. 5b). Since the CCTELM model produced
many short saccades, these saccades would be grouped into a
single histogram bin when plotting the distribution of saccade
amplitudes. Moreover, constraining the fixation locations to a
limited predefined set of locations introduced the potential
question of whether the model’s behavior depends on the number
of predefined locations. In this research, the minimum distance
between adjacent locations was ~0.7° and the minimum SD of
saccade landing position was ~0.4° (Supplementary Fig. 6b), so
the CCTELM model could fixate at any location within the search
field. Therefore, adding saccadic inaccuracy mitigates the
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dependency on predefined locations, and smooths the distribu-
tion of saccade amplitudes.

To better see the relative importance of the three constraints to
the improvement of model’s goodness-of-fit, we compared the
three models and the CCTELM model without each of the three
constraints (using the same parameter values) to experimental
data. The B. of the ELM and CTELM models were indeed lower

than those of the CCTELM model in both the spatial and
temporal aspects of eye movement statistics (Fig. 9). The three
constraints had a relatively small effect on the B, of the fixation
duration and fixation location distribution (Fig. 9a, ¢, d).
Removing the saccade amplitude penalty function had a large
impact on the B. of the saccade amplitude distribution, and
removing the saccade inaccuracy had a smaller impact (Fig. 9b,
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Fig. 7 Effect of memory capacity on the CCTELM model's behavior. a Effect of memory capacity on the goodness of fit to training data. For fixation
duration, fixation distance (to screen center) and saccade amplitude, we first align sequences of eye movements at start of the trial and calculated the
initial 20 histograms of these metrics from all (both correct and error) trials. Then we calculated the 20 Bhattacharyya coefficients (B.) at each ordinal
position and averaged them together to obtain a single value for each memory capacity per metric. For fixation location we calculated the overall 2-
dimensional histogram from all trials, smoothed by a Gaussian window with SD = 0.35° (15 pixels), and calculated the B, for each memory capacity. The
thick black line is the average of the four colored thin dashed lines. “Inf" represents unlimited memory capacity. b Effect of memory capacity on the mean
number of fixations to correctly find the target at different eccentricities of the CCTELM model. The data in panels a and b came from the CCTELM model
whose parameters were fit assuming unlimited memory but evaluated under different memory capacities. ¢-j Effect of memory capacity on fixation location
distribution (lighter means higher density). White circle is the boundary of search field. k-r Effect of memory capacity on fixation distance distribution to
image center within the initial 15 fixations after the first saccade. The gray bars were subjects’ data in the training set, and lines with different colors in each

panel represent model result with different memory capacity.

Subjects ELM CTELM CCTELM

(X
SN
5

Fig. 8 Example scan path of the subjects and models. Scan paths on each
row have similar fixation number shown at the left side. The search starts
from image center. Black circle represents the image boundary, cross
represents a fixation, and the line between two crosses represents a
saccade. The final fixation to report the target location is labeled in red. The
red circle shows the true target location.

4 - 6 fixations

14 - 16 fixations

24 - 26 fixations
NS

e). Removing the memory capacity limitation mostly affect the B,
of the distribution of fixation distance to screen center (Fig. 91). In
summary, the constraints on saccade amplitude and memory
capacity improved the CCTELM model the most, and the
constraint on saccade accuracy improved the model to a lesser
degree.

Generality of the CCTELM model. Since measuring the visibility
map requires multiple experiment sessions, it is the principal
limitation to increasing the sample size. In addition, the visibility
map is also highly specific to the properties of the target and
background used in the experiment. One may therefore wonder
how generalizable the model is. We compared our model (with
the same parameter values) with the data from a slightly different
visual search experiment. In that experiment, we used the same
background and target image, but the target contrast was fixed to
0.15 (higher than the current experiment). Seven subjects were
recruited (four were new subjects), and we did not measure the
visibility map. We found that there was still considerable overlap
of the model’s and this new set of subjects’ eye movement
metrics, except that subjects’ distribution of fixation location had
a more pronounced hotspot slightly above the image center, and
was more uniformly distributed elsewhere (Supplementary
Fig. 17). This showed that the CCTELM model could potentially
be generalized to a larger set of subjects, even for an experiment
with different target contrasts.

Discussion

In this study, the comparison of eye movement statistics between
humans and both the ELM and CTELM models showed clear
differences in the distribution of fixation location, fixation dis-
tance to image center, saccade amplitude, and the dependency
between successive eye movements. The CCTELM model further
suggested that the discrepancy was mainly due to constraints on
saccade amplitude, saccade accuracy and memory capacity.
Therefore, if we consider the degradation of visibility in periph-
eral vision as the only limitation to visual search, the subjects
clearly employed a suboptimal eye movement strategy to find the
target.

However, this suboptimal strategy did not greatly increase the
median fixation numbers. Considering the physiological mean-
ings of the constraints in CCTELM model, we think that humans
may be balancing task performance and costs when making eye
movements to search for target. If humans try to use the optimal
eye movement strategy to fully use the visibility map, they will
need to make more long saccades, which means more time spent
on saccades!'?, more subsequent corrective saccades because of
decreased landing accuracy’, and stronger saccadic suppression
during the saccade!l. They also need to maintain a long history of
previous fixation in memory, which will also increase the cog-
nitive load. Choosing a suboptimal eye movement strategy that
reduces these costs while maintaining a high search performance
should, therefore, be a better solution.

Our results were different from a previous similar experiment,
which showed that human eye movement statistics were con-
sistent with the optimal model'2. This could be caused by both
individual variability of visual search strategies and the difference
of the amount in training prior to the visual search experiment.
Previous results? came from two subjects on whom the target
visibility had been measured with more trials at more retinal
locations, and had performed more visual search trials with more
target visibility levels, so it is possible that previous results were
the behavior of two well-trained subjects whose performance was
closer to the optimal model. In our study, we recruited more
subjects, so because of time limitations we could not obtain a very
densely sampled visibility map and perform many visual search
trials, and we did not measure the full temporal course of visi-
bility on some subjects in the testing set before the visual search
experiment. This may cause the behavioral differences between
different groups of subjects, but the current results may be more
generalizable to a larger pool of subjects.

Several other studies have also shown that human eye move-
ments are suboptimal when optimally performing a task required
effortful computation and careful planning#-%, so subjects may
simply follow good heuristics when searching in these noisy
images. The advantage of this strategy is that the computational
cost of saccade target selection may be further reduced to
selecting random location from a heuristic distribution®, as even
the relatively computationally efficient ELM rule requires
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Fig. 9 The effect of three constraints in the CCTELM model on the goodness-of-fit of different eye movement metrics. In all panels, “CCTELM"
represents the full CCTELM model; “Inf Mem” represents the CCTELM model with infinite memory capacity; “No SacAmp Penalty” represents the

CCTELM model without saccade amplitude penalty function; “No SLP Error”

represents the CCTELM model without saccade landing position offset and

variance. The last three models were evaluated using the same parameters as the CCTELM model. a-¢ Bhattacharyya coefficient (B.) between the subjects’
and models’ overall fixation duration (a), saccade amplitude (b), and fixation location (¢) distributions. d-f Average B. between the subjects’ and models’
fixation duration (d), saccade amplitude (e), and fixation distance to image center (f) distributions of the initial 20 fixations or saccades. The average B,
was obtained by first calculating 20 B. for each of the initial 20 fixations or saccades after the start of a trial (thus obtaining 20 B. values at each ordinal
position in eye movement sequences), and then averaging the 20 B. values. The 99% confidence interval (shown in error bar) was calculated by
bootstrapping the experimental and simulation data for n=2000 times and then multiplying the SD of all B. by 2.576. The violin plot represents the

distribution of B. from all bootstrapping trials.

convolving two maps across the visual field in every fixation. The
heuristics may be good enough but not strictly optimal for this
particular task. From this perspective, the subjects may also be
closer to optimal balance between search performance and the
cost to perform the task.

The CCTELM model controlled fixation duration by a drift-
diffusion process based on experimentally measured temporal
course of visibility and an artificial collapsing decision threshold.
Our approach shared some similarities to some previous models,
which controlled fixation duration collectively by an autonomous
timer and modulation by processing demand from the current
fixation212224, From this viewpoint, the CCTELM model
implemented the autonomous timer as the collapsing threshold,
and modulation from the current fixation as the drift-diffusion
process. Fixation will be prolonged if the model cannot determine
whether the current fixation location has a target because the
probability value at the fixation location will not decrease quickly.
However, our approach differed from previous models in that the
diffusion process was constructed from experiment data, thus
being more biologically realistic, and it is based on probability
values so it can be incorporated into the ideal searcher theory.
The introduction of a collapsing threshold may seem arbitrary,
but its existence, though still controversial, has received certain
experimental support>>34, and it allows human to trade-off
accuracy for speed if the current visual information remains
ambiguous about target location. Besides, though the CCTELM

10

model seemed to control the spatial and temporal aspects of eye
movement separately (Fig. 2), the relationship between previous
saccade amplitude and the next fixation duration (Fig. 5e) showed
that the two aspects were not completely independent because
they both depended on the posterior probability map.

An interesting discovery is that the subjects’ eye movement
statistics predict the memory capacity in visual search. Similar
capacity value has also been used in some models of scene
viewing®, but many models of visual search still ignore this
memory limitation. We found that the memory capacity had a
considerable effect on the model’s eye movement statistics and its
agreement to experimental data, so it may be worthwhile for
future simulation studies to consider this factor. Memory helps
not only in identifying the target, but also in rejecting regions
without the target so that the model had a higher chance to meet
the target in the future. If the memory capacity is too small, the
model will quickly forget information near the image center
(where the search starts), and by the ELM rule, the model will
tend to place subsequent fixations near the image center to gain
maximal information (fixating near the image boundary causes
part of the visibility map to be wasted). Conversely, if the memory
capacity is too large, the model will not forget the information
near the image center, and by the ELM rule the model will tend to
search the outer unexplored part of the image to gain maximal
information. It is mainly the combination of these two effects that
helps us to estimate the memory capacity.
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The type of short-term memory that we modeled is similar to
the fragile visual short-term memory (FVSTM)3637, FVSTM is
thought to be an intermediate stage between iconic visual
memory and visual working memory. It has a high capacity of
~5-15 items, lasts for at least 4 s® and has been shown to be tied
to the location of the original visual stimulus?’, making it parti-
cularly suitable for integrating information across multiple fixa-
tions to generate a posterior probability map. However, the exact
memory capacity in visual search tasks remains controversial.
There are reports indicating that visual search has a memory of
3-4 items38, 7—9 items3®40, and >10 items*!. The predicted
memory capacity of eight fixations of the CCTELM model lies
within the range of these reported results and thus may serve as
additional evidence in this debate. However, the exact memory
capacity requires future investigations and may serve as a test of
our model.

Visual search is a complex behavior that involves multiple
brain regions, and the experiment and computational methods in
this study are still not perfect. Measuring the visibility map
requires a large number of trials, which limits the sample size and
the generality of the visibility map of this study. In addition, the
visibility map was measured with target location cue, but this was
not the true situation in the visual search experiment. We think
that the subjects’ actual visibility map in visual search experiment
was somewhere between the visibility map measured with and
without the target location cue, because previous studies have
shown that visual sensitivity will increase at future fixation
locations in a sequence of eye movements, even to the level
comparable to the visual sensitivity measured when the target
location is cued#243. However, the exact visibility map is difficult
to measure because it depends on the planned future eye move-
ment sequence.

The CCTELM model was relatively simple compared to the
real brain. For example, the model either kept information from a
fixation or completely forgot it, whereas in humans, memory may
gradually decay over time*4, which was considered in a previous
model of scene viewing®>. Multiple types of memory may be
involved in visual search?>4%, but this was not reflected in the
current model. In addition, humans may plan multiple fixations
ahead during a fixation?’, whereas our model plans only one
fixation ahead. We also did not include the generation of sec-
ondary saccades in the model. Humans tend to undershoot after a
long saccade and then make a short corrective secondary saccade
to the original saccade target, which may explain why the mean
saccade amplitude decreased after a long saccade (Fig. 4g). From
previous datal®, we also found that the mean fixation duration
before secondary saccades was ~116 ms, which is very close to the
mean fixation duration after a saccade of ~15° in our data.
However, the previous study measured the frequency of sec-
ondary saccades only in a visually guided saccade task!®. There-
fore, since we did not know the frequency of secondary saccades
in eye movement sequence during this natural visual search task,
we did not consider secondary saccades in the model.

Although the CCTELM model is suboptimal, the median
search speed was still faster than subjects in correct trials. This
finding suggests that the model did not capture all the sub-
optimalities in the human eye movement strategy. One possible
missing suboptimality is the bias in choosing the fixation location.
An obvious bias of the subjects’ fixation location was the hotspot
located above the image center. The hotspot was caused by a large
upward bias in the first saccade from some subjects, but the
reason for this behavior is unknown. Since the target was ran-
domly embedded inside the image and there was no spatial bias in
the statistical features of the search images, such bias in choosing
fixation location may influence subjects’ search speeds. For
example, if the target was located just below the image center, the

upward bias in the first saccade may cause the subjects to miss the
target, and this might explain why subjects searched surprisingly
slow when the target was about 0.6-0.9° away from the image
center.

Another factor that may limit subjects’ search performance is
the trade-off between response accuracy and search speed. In the
CCTELM model a response was made whenever the posterior
probability at the current fixation location exceeded the target
detection threshold, but in humans, this process may be much
more complex. For example, when there were multiple locations
similar to the target, subjects who emphasized more on response
accuracy may actively compare them, which could greatly
decrease the search speed. Besides, when the target was located
near the image center, subjects may note it initially, but still
intentionally scan across the image to confirm the target location.
The individual variability on this trade-off may also explain the
individual variability of search speed besides the different amount
of training mentioned previously.

Finally, none of the three models generated as many fixations
as subjects displayed in the error trials. One possible reason is that
we used dynamic noise instead of static noise in the actual
experiment. We think that there are at least two reasons that
cause humans to make visual search errors: (1) A local feature in
the noisy background image was very similar to the target and
caused misidentification; and (2) A local feature in the noisy
background image made the target too hard to identify. Both
reasons are related to the static noise in the stimulus image.
Particularly in the second case, subjects may search repeatedly
before giving up, which might explain why the fixation numbers
are much larger in the error trials than in the correct trials.
However, since we used dynamic noise in the model, the second
scenario above will not occur because the noise in each fixation is
independent, and the probability of repeatedly obtaining a high
noise level at the target location is very low. Therefore, the model
is unlikely to generate a large number of fixations in the error
trials.

Methods

Human subjects. Ten student volunteers (six males, aged 19-30 years) partici-
pated in the experiment for monetary compensation. All subjects had no neuro-
logical or psychological disease history and had normal or corrected-to-normal
vision. This study was approved by the Ethics Committee of the School of Life
Sciences at Fudan University, and all subjects provided written informed consent.

Apparatus. Stimuli were presented on a 24.5-inch BenQ ZOWIE X12540 LCD
monitor at a resolution of 1920 x 1080 and a refresh rate of 240 Hz. Subjects were
seated 70 cm in front of the display with their heads fixed by a forehead and chin
rest. Stimuli were generated and presented using MATLAB (MathWorks) and the
Psychophysics Toolbox*8->0 running on a Windows 7 (Microsoft) machine. Eye
movements of both eyes were recorded at 2000 Hz with a TRACKPixx3 eye-tracker
(Vpixx Technologies, Canada). During each laboratory visit, subjects first per-
formed a 13-point calibration routine until the average test-retest measurement
error of both eyes fell below 0.5°. Recalibration was performed during experiment
whenever the eye-tracking accuracy failed to meet the requirements of the
experiment (described below).

Target and background image. The target was a six cycle-per-degree Gabor with
a diameter of 0.3°, oriented 45° counterclockwise from the vertical, and windowed
by a symmetrical raised cosine (half-height width was one cycle of the Gabor). The
background image was a circular naturalistic noise image (1/f? power spectrum)
placed at the screen center with a diameter of 15° and root-mean-squared (RMS)
contrast of 0.2 (Fig. 1a). The RMS contrast was the SD of the pixel gray value
divided by the mean. The area outside the background image was set to the mean
gray value of the image (0.5). The background images used in each trial of detection
task and visual search task were randomly picked from a database of 1000 inde-
pendently generated images.

Selecting target RMS contrast. In this experiment, we measured the relationship
between foveal target visibility and target RMS contrast and selected the target
contrast with visibility = 3.0. Each participant had a unique target contrast and was
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used for all subsequent experiments. The goal was to normalize the target detection
difficulty across subjects.

At the start of each trial, a black cross and stroked circle appeared at screen
center, indicating the fixation and target location. The remaining display area was
set to 0.5 gray value. Subjects began a trial by fixating within 1° from the screen
center and pressing a button. The cross and circle then disappeared for 200—400
ms (chosen randomly), followed by two 250 ms intervals of the stimulus image
separated by a 500 ms gray interval. The two stimulus images had the same noise
background, but a randomly chosen one had a target at the center. The subjects
then chose the interval that contained the target with a keyboard. A trial was
aborted if the participant fixated more than 1° away from the screen center at any
time during the trial. This section contained 4—5 levels of target contrast (ranging
from 0.03 to 0.12), and each level had 200 trials. Trials with different target
contrasts were randomly interleaved.

We first calculated the hit rate and correct rejection rate of each target contrast
level from behavior data. The hit (or correct rejection) rate was defined as the
number of trials that target appeared in the first (or second) interval, and the
participant made a correct response, divided by the total number of trials that
target appeared in the first (or second) interval. The relationships between the hit/
correct rejection rate and target RMS contrast C were then separately fit with a

Weibull function:
f(C) = 0.5+0.5x {1—exp[—<c%>s]} (1)

The threshold parameter Cr and steepness parameter s were estimated by
maximum-likelihood methods implemented in the Palamedes Toolbox°!. The
relationship between the foveal target visibility and target RMS contrast could then
be estimated by signal detection theory>2:

#(0) - HlOL = ~fa(©)

)

Here, z(x) is the inverse standard normal cumulative distribution function.
fu(C) and fcr(C) are the estimated hit and correct rejection rates given by Eq. (1).
We could then obtain the target contrast that made d'(C) = 3.0.

Detection task. The goal of the detection task was to measure the relationship
between the stimulus presentation time and target visibility along the four cardinal
directions in the search field. The task had three versions. Four subjects partici-
pated in the first version, four subjects participated in the second version (one
participated in both versions), and three subjects participated in the third version.
The subjects completed the task in multiple laboratory visits within 2 months. The
procedure was the same as the experiment to select the target RMS contrast, except
that we varied both the stimulus duration and the target location. Before the start of
the formal experiment, they practiced for 25-100 trials for performance stabili-
zations. The subjects received feedback about their performance only in the
practice trials.

In the first version of the experiment, the subjects were required to fixate on the
screen center and identify which of the two stimulus intervals contained the target
at the cued location. The experiment contained five blocks (the four cardinal
directions plus the screen center). In each block, we chose 3 — 4 different target
locations (except when the target was in the center of the screen) and 4 — 5 levels of
stimulus presentation time. The tested target locations were determined for each
subject by a pilot experiment. In the pilot experiment, we found the smallest target
eccentricity that makes the detection performance correspond to roughly the
chance level (50-60% correct rate after practicing), and this eccentricity was the
maximum target eccentricity used in the formal experiment. In the formal
experiment, when the target appeared at the screen center, the stimulus duration
was chosen from 4 to 200 ms, and each level was tested for 100 trials. When the
target appeared at peripheral locations, the stimulus duration was chosen from 50
to 700 ms, and each stimulus length and target location combination was tested for
50 trials. This version involved ~5000 trials.

In the second version of the experiment, the target location cue was not shown,
and in each trial, the target location and stimulus presentation time were randomly
chosen from all possible combinations in the first version of the experiment. This
version involved ~5000 trials. The results are shown in Supplementary Fig. 14, but
they are not used in the results of the main text.

The third version was the same as the first version except that there was only
one level of stimulus presentation time (250 ms). It was used to measure the
visibility map efficiently and obtain enough training to prepare for the visual search
experiment, so the data from this version were not used in this manuscript. This
version involved 1500 trials.

To calculate the visibility map measured with or without the target location cue,
the behavior data from different subjects in each version were first pooled together,
and the target visibility at each location for each stimulus duration level was then
calculated by Eq. (2). Note that since the subjects had different visibility maps,
some locations were sampled from multiple subjects, while others were sampled
from a single subject. The points that were sampled from more subjects were given
proportionally larger weights when fitting the visibility map function (see below).

Evidence accumulation model. We extended the previously proposed template
response model!~3 to visual stimulus at each visual field location to a drift-diffusion
process W, and was later used in the continuous-time eye movement model.
Suppose the visual evidence AW generated at one location within a short time
interval At is independently drawn from a normal distribution. If the target appears
at this location, the distribution is N(At, 62At), otherwise N( — At, 62At). The value
of o controls target visibility at this location. If the evidence at each time step At is
integrated perfectly, then the total evidence at time T = n - At follows the dis-
tribution of the sum of n normal random variables:

N(T,o*T),
{N(fT,azT), ®)

According to signal detection theory®2, the evolution of target visibility d’ over
time is:

if target exists

if no target exists

T—(-T) 2VT )
V2T o
Equation (4) implies that target visibility will increase to infinity at any retina
location given unlimited amount of viewing time, which is impossible. This
problem can be resolved if we assume that the weight w of previous evidence
decays exponentially by a speed parameter k over time:

w(t) = exp(—k - t) (5)
Suppose the total accumulated evidence at one location from 0 to the ith time

step is W; (W, = 0), then by the (i + 1)th time step, the total accumulated evidence
is:

d(T) =

Wi = AW + W, - w(At) (6)

i

Then the total acquired evidence W, at time T'= n - At follows the distributions:

n—1 n—1
N(At- S w(i- At), oAt S wii- At)2>, if target exists
i=0 i=0

7)
n—1 n—1
N<7At S w(i- At),0?At- S w(i- At)2>, if no target exists
=0 i=0
Note that:
n—1 T_ kT
lim [At- S ow(i- At)] = [w(t)dt = %H (8)
A=0 = 9
n—1 T "
lim [At- 5:30 wii- At)z] = { w(t)?dr = =R (9)

Substituting Egs. (8) and (9) into Eq. (7), the evolution of target visibility over
time can be formulated as:

1 — exp(—kT) _ 4
K1+ exp(—kT)]’Whereu " V2o

We first fit Eq. (10) to the temporal course of target visibility at each measured
retinal location (Supplementary Fig. 2) and got the values of parameters a and k at
different locations (x, y) relative to the fixation location (0, 0). We found that the
values of these two parameters decay exponentially from fixation location
(Supplementary Fig. 3). Considering the asymmetry between horizontal and
vertical visibility, we fit the values of a and k by:

d(T)=a (10)

a(x,y) = py -exp(—p, - /** +ps - )?) (11)
k(x,y) = ps - eXP(*P4 /x4 ps ')’2) (12)

Equations (10)-(12) together describe the change of visibility map over space
and time. The parameters p;, p,, ps, P> Ps in these equations were estimated by
minimizing the MSE between the calculated and measured visibility data using the
GlobalSearch algorithm in the Global Optimization Toolbox of MATLAB. Since
the pooled experimental data at each measured location may come from a different
number of subjects, to make each subject’s contribution to the pooled visibility map
roughly equal, the points that were sampled from more subjects were given
proportionally larger weights when fitting the visibility map function.

Visual search task. In this experiment, subjects searched for the target within the
background noise image as fast as possible while trying to maximize the response
accuracy. They were informed that the target locations were sampled uniformly
within the circular noise region of the image. The subjects began each trial by
fixating within 0.8° away from a cross displayed in the center of the screen (checked
by the eye-tracker) and pressing a button. Then, the cross disappeared for a ran-
dom interval (0.2-0.3 s), and the search image appeared (Supplementary Fig. 1c).
No limits were imposed on the searching time. When the subjects found the target,
they fixated on the target and pressed the keyboard. The final fixation location and
the target’s true location were then shown. If the fixation error was less than 1°, we
labeled the response as correct. We recalibrated the eye-tracker if subjects could not
proceed at the start of a trial, or if subjects had found the correct target location,
but the recorded final fixation location was more than 0.8° away from the target
location. On average, subjects recalibrated 3.3 times (range of 0.5-5.5 times) per
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100 trials. All 10 subjects completed this experiment, but the numbers of trials were
different (200 — 500) depending on their available time (Supplementary Table 2).

To examine the generality of the visual search model, seven subjects (four were
new subjects) participated in an extended visual search task. The experimental
procedure and the background and target image were the same, but the target RMS
contrast was fixed to 0.15. Each subject completed 100-300 trials depending on the
available time. The data from this experiment were used only as the testing set in
Supplementary Fig. 17.

Eye-tracking data analysis. Eye-tracking data were analyzed by the EYE-EEG
extension® of the EEGLAB toolbox®4. We used an adaptive velocity-based algo-
rithm®” to classify eye movements into saccades, fixations and blinks. Fixations
separated by blinks were recognized as two fixations. To address intermittent noise
in the data, we used the minimum instantaneous eye movement velocity in the
event classification algorithm. In practice, we found that this method can effectively
handle noisy data from a single eye. In all the subjects, only two trials with
unreliable recordings in both eyes were rejected. Data from the four subjects in the
first version of the detection task served as the training set to fit the parameters of
the eye movement model, and data from the remaining 6 subjects served as the
testing set (Supplementary Table 2). The training set contained 21,439 fixations
and 19,645 saccades from 1190 trials, and the testing set contained 44,320 fixations
and 40,190 saccades from 1958 trials (Supplementary Table 2). The data in the
extended visual search experiment contained 23,477 fixations and 21,338 saccades
from 1502 trials.

To quantify the noise level of the eye movement data, we calculated the SD of
the data samples and the RMS of inter-sample angular distances for each fixation
for each eye of each subject, then averaged across the two eyes. These two metrics
were calculated as:

Nsample (=% + ()
5D, ([l ]

sample

(13)

Noample ~1 _— z+ _— 2
RMS;, = \/Z,:1 [(Nll.l“pk—)l i) (14)
where Ngmple is the number of data samples in one fixation, (x;, y;) is the
horizontal and vertical gaze location of the ith sample of one eye, and (%, 7) is the

average gaze location of one fixation of one eye.

When summarizing fixation durations, we excluded the first (when fixating at
screen center) and the last fixations (when making response) to avoid the effects of
the anticipation and motion preparation on the fixation duration. When
summarizing fixation locations, we excluded the first fixation. We did not discard
any fixations when summarizing the fixation number needed to find the target in
each trial. As the number of eye movement events of each subject was imbalanced
(Supplementary Table 2), the eye movement metrics were first summarized for
each subject and then averaged across subjects.

The entropy-limit minimization (ELM) model. We used the ELM model as our
baseline model for replication of previous study!. The model could only fixate at
400 locations uniformly sampled inside the search field (Supplementary Fig. 5a).
We set the fixation duration to 250 ms and evaluated the visibility map using Eq.
(10). The visual information W; | obtained at location i (i = 1+-+n, n =400) during
the Fh fixation at location L was sampled from normal distribution

N(o0.5, l/d,f_er) if the target was at this location, otherwise N(—O.S, l/df,_). The
ELM model did not consider fixation duration, so the visual information at each
location was sampled once per fixation. The posterior probability map of target

location was calculated from information gathered in all previous fixations
(unlimited memory) according to Bayesian theory:

Pz,F :P(i‘le:"'vaF) =

=5 (15)
'J
Here p(i) = 1/n is the prior probability of the target being at location i. The
vector W = (Wu_} s W,

w1, ) is the visual evidence at all locations gathered

during the Fth fixation at location Ly. Assuming the noise was independent at each
location and during each fixation, we have:

(W, - W, li) :fle(WL/Ii) :f}i[ljljlp(%f\i) (16)

Since Wit conditioned on target location i follows normal distribution
N ( +0.5,1/ dﬁ/), by substituting its probability density function into Egs. (15)

and (16) we could derive:

A, F 2
p(i) exp{ . (d..L, Wi, Py esp(43, Wi,

S e ()] ()]

The ELM model selected the next fixation location to maximize the expected
information gain of the next fixation. This could be calculated in a very simple

P

form!:

Ly, = arﬁmax{HLr - E[HLM] } = argmax{%zn:(Pinr . df,_l_u) } (18)

Fi1 L i=1
where H; = — Dy [Pi_ 1, - In(P;, ,_r)] is the entropy of posterior probability of
target location.
The model found the target whenever the posterior probability of the target

being at the current fixation location exceeded a threshold 0. The value of O was
chosen to make the model’s correct response rate comparable to the subjects’” data.

The continuous-time ELM (CTELM) model. The CTELM model extends the ELM
model to account for the distribution of fixation durations. A schematic diagram of
the CTELM model is shown in Fig. 2 and will be described in the following
sections.

Temporal course of evidence accumulation. The accumulation of visual evidence
over time can be described by the evidence accumulation model discussed in
previous sections. In practice, for each fixation f, we first calculated the values of
parameter a;; and ki_L/ at the 400 locations across the visual field according to Eqs.
(11) and (12). These values were calculated only once per fixation. Then for each
time step At (1 ms), a random evidence sample AW,»_L/ was generated at each

location i from the normal distribution N ( + At, 8At/ a%L]) (see the relationship

between a and o in Eq. (10)) depending on whether target was present at this
location. The current total accumulated evidence Wig, 1, at location i at time Ty
since the start of the i fixation was calculated from W; 1Tt in the previous time
step by:

Wi, =AWy +Wip 1 oac- eXP(_ki.L,At) (19)

Target’s posterior probability map. At each time step, the posterior probability of
target being at the ith (i = 1---n, n = 400) location could be calculated from the
accumulated evidence from the current and all previous fixations (unlimited
memory) by Bayesian theory:

. P(Wy, 1, Wi, 1, [i)p(i)
By = (Wi Wiy ) = sl Mo
i = W War ) = S o0 Mo T

(20)

where W, = (WLL;.T;v EEE Wn.LF,TF) is the accumulated evidence by time

Tr of the Fth fixation at all locations. Assuming that visual information was
independently accumulated at each location during each fixation, Eq. (20) could be
simplified to (Supplementary Method):

“,2,_/ Wiy 1y

. F
ey | S T
242exp (—r/ K ,7)

(1)

a2 W,
F iy LTy
)- L MR A S
Yoy pirew | 3

242exp (—7} ki ’f)

By applying Eq. (21) to all target locations at each time step, we could calculate
the change in the posterior probability map of the target location over time.

Decision on saccade timing. In the CTELM model, saccades were triggered ran-
domly in two different ways according to their relative frequency. Ninety-seven
percent of saccades (normal saccades) were triggered by a decision process con-
cerning whether the current attention location contained the target. The first
saccade in a trial was always a normal saccade. If the probability of the target being
at the current attention location was lower than a threshold, the model makes a
saccade decision. We defined the current attention location as the current fixation
location when the next saccade decision had not been made, and as the next
fixation location when the next saccade decision had been made but the eyes had
not moved because of the delay from the cortex to the eye movement muscles
(saccade lag). We implemented the saccade threshold 6s(f) as a “collapsing
bound”33-56-58.

log,,[05(t)] = g, - exp {_ (é) ‘13} (22)

Here, q1, 42, 45 (91> 43 <0, g2 > 0) are parameters whose values are estimated by
fitting to the fixation duration distribution in training set.

The remaining 3% saccades were low-latency saccades generated by other visual
pathways>»¢0. This proportion was set according to the frequency of express
saccades in an overlap task®!. The latency (in seconds) is directly drawn from a
gamma distribution with shape parameter 10 and scale parameter 6.9 x 103, plus a
delay of 0.03 s. This latency follows a distribution with mean =99 ms, 5%
percentile = 68 ms, and 95% percentile = 138 ms, which roughly falls in the
80-120 ms range of express saccade latency®2. When a saccade was triggered, a new
saccade decision process started immediately before the delay of 0.03s.

In the model, the delay from the retina to the visual cortex (eye-brain lag) was
0.06 53, and the saccade lag was 0.03 4. After the saccade decision was made, a
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new saccade decision process started immediately, and the model continued to
accumulate information from the previous fixation until the arrival of new
information after the eye-brain lag. We did not consider the saccade duration (a
saccade is finished instantly) because of saccadic masking!!.

Decision on saccade target. When making a saccade decision, the CTELM model
used the ELM rule (Eq. (18)) to select the next fixation location. However, the
deviation of Eq. (18) as shown by Najemnik and Geisler! requires the visibility
d; 1,., to be a fixed value within a fixation, but in the CTELM model, d; 1,., changes

with time. As a simplification, we set the expected duration of the next fixation to
be 0.25 s when evaluating Eq. (18). We ran Monte Carlo simulations and found
that the expected information gain calculated in this way had a high Pearson
correlation (mean = 0.92) with the actual information gain (Supplementary
Method, Supplementary Fig. 18).

Decision on target location. The model found the target whenever the posterior
probability of the target being at the current fixation location exceeded a threshold
O1. The value of 01 was chosen to make the model’s correct response rate com-
parable to the subjects’ data.

The constrained-CTELM (CCTELM) model. The schematic diagram of the
CCTELM model is the same as the CTELM model (Fig. 2), but we limit the
memory capacity, suppress the probability of long saccades, and add saccade
inaccuracy to the model.

Memory capacity. For simplicity, the model either kept all information from a
fixation or completely forgot it. A model with a memory capacity of M could only
integrate information from the past M — 1 fixations plus the current fixation, so at
the Fth fixation, the earliest fixation that the model could integrate was f; = max(1,
F— M+ 1). The posterior probability of target being at location i could be cal-
culated as:

P<W"&-Trs :"’vwl,F.TF‘i)p(’)

Pi‘TF = (iIWL/;‘Tkv"'ﬂwLF,TF) = (23)
' Z/:l {P(WLA T Wiy U)P(])]
This expression could be simplified to (Supplementary Method):
“:')_ WiLe.T,
pi)-exp Z/F 1 =i
242exp (J, ki 1y
P = (24)

2w
g WjiLg Ty

n . F
S pvee | S — L
22ep | ~Tp ki

Decision on saccade timing. The CCTELM model used the same method to decide
saccade timing as the CTELM model. However, because of the saccadic inaccuracy,
the CCTELM model could fixate at every possible location in the search field (not
just the predefined 400 locations). The posterior probability of target being at
current attention location, therefore, was the sum of posterior probability at all the
predefined 400 locations within 0.5 degrees away from the actual attention location.
Our Monte Carlo simulation showed that in 44.46%, 47.13% and 8.41% cases, one,
two, and three nearby locations were counted, respectively.

Decision on saccade target. We applied a penalty function H(L; Ly,,) as a general
representation of possible saccadic cost to the ELM rule when selecting the next
fixation location:

1< ,
Liyy = ar%max{H(Lf,L/H) 'EZ(Pi‘Tf 'di,2LH>} (25)

f+1

max [D (Lf, LfH), 1]
H(Lf,LfH):exp T (26)

where D(Ls Ly, 1) is the angular distance between the current and next potential
fixation location, and c is a free parameter. We did not apply the penalty function
within 1° of the fixation location to prevent interference with the inhibition of
return phenomenon generated by the model. The exponential function was chosen
because: (1) The saccade amplitude distribution was very similar to the exponential
distribution. (2) We also tested linear and reciprocal functions as the penalty
function, but their results were inferior to those of the exponential function (the
goodness-of-fit of saccade amplitude distribution: exponential penalty: B. = 0.9930,
reciprocal penalty: B, = 0.9858, linear penalty: B. = 0.9918; Supplementary Fig. 19).

Saccade inaccuracy. The accuracy of saccades can be described by the bias between
the mean saccade landing positions and the saccade target and the SD of the

saccade landing positions. We considered the bias and SD of the saccade landing
position in the CCTELM model, so it could fixate at any location inside the search
image instead of the 400 predefined locations. We further assumed that the actual

saccade landing positions formed a 2-dimensional Gaussian distribution around
the mean!? and ignored any difference in the horizontal and vertical directions.

To accurately describe the relationship between bias and SD of saccade landing
positions and saccade target eccentricity, we analyzed the raw data from a previous
study'®. In brief, subjects were required to saccade at a target with eccentricity
varying from 0.5° to 17.5° left or right away from the initial fixation location, and
identified the number of small dots presented around the target location!®. Only
the first, non-anticipatory saccades after presentation of the target were analyzed.
Raw data was shown in Supplementary Fig. 6a. Leftward and rightward trials with
the same eccentricity were combined (leftward saccades flipped to rightward). The
bias of saccade landing position was calculated as the mean of horizontal saccade
amplitude minus the saccade target eccentricity. The SD of saccade landing
positions g, was calculated as:

YOI it e i (27)
Oy = N
Here (x; y;) is the saccade landing position of the ith trial, (%, 7) is the mean
saccade landing position of all N trials with the same target eccentricity. By linear
regression, the relationship between target angular eccentricity x and o, could be
described by (Supplementary Fig. 6b):

0, = 0.0453x + 0.364 (28)

And the relationship between target angular eccentricity x and saccade landing
could be described by (Supplementary Fig. 6¢):

Bias = — max(0,x — 10)x 0.1195 (29)
Decision on target location. The CCTELM model stopped searching whenever the
posterior probability at the current fixation location (sum of all 400 predefined
locations within 0.5 degrees from fixation location) exceeded a target detection
threshold 6r. The model set the target location as the predefined location with
highest posterior probability. The value of 61 was chosen to make the model’s
correct response rate comparable to the subjects’ data.

Statistics and reproducibility

Fitting model parameters. Supplementary Table 1 shows a summary of the para-
meters used in the ELM, CTELM, and CCTLEM model. All the parameters were
derived by fitting the models to the eye movement data of training set (including
correct and error trials).

For the CTELM model, there are three free parameters in Eq. (22) that control
the distribution of the fixation duration. The remaining parameters were estimated
from experimental data and fixed when fitting the free parameters. The values of
the free parameters were estimated by genetic algorithm®” that minimized the sum
of the Bhattacharyya distance (B4)?2 between the simulated and experimental
histograms of the fixation duration (Tim, Texp):

Loss = By (Tsim., Texp) (30)
where the By of the two histograms H; and H, (with N bins) is defined as:
By(H,, H,) = —In[B.(H,, H,)] (31)
N
B.(H, H,) = y H, (i) - Hy(i) (32)

i=1

The histogram should be calculated as probability. Intuitively, the
Bhattacharyya coefficient quantifies the degree of overlap between two histograms.
If the two histograms are identical, then B, = 1, and if there is no overlap between
the two histograms, then B. = 0. The genetic algorithm was implemented in the
Global Optimization Toolbox in MATLAB. We set the population size to 150 and
the maximum number of generations to 25, leaving the other parameters
unchanged. For each parameter sample in the population, the model was run 1000
times to obtain the histogram of fixation durations. We used the Multicore package
(https://www.mathworks.com/matlabcentral/fileexchange/13775-multicore-
parallel-processing-on-multiple-cores) to accelerate the calculation. Fitting the
parameters took ~2.5h when running on 11 machines.

For the CCTELM model, we fit the four free parameters in Eqgs. (22) and (26) by
genetic algorithm. The cost function is the sum of the By between the simulated
and experimental histograms of the fixation duration (Tyim, Teyp) and saccade
amplitude (Agim, Aexp):

Loss = Bd (Tsim7 Texp) + Bd (Asivaexp) (33>

We set the population size to 200 and max generations to 25, leaving the other
parameters unchanged. For each parameter sample in the population, the model
was run 1000 times to obtain the histograms of the fixation durations and saccade
amplitudes.

To find the memory capacity for the CCTELM model, we first assumed
unlimited memory capacity and fit the four free parameters. We then evaluated the
model with memory capacity of 2, 4, ---, 14 and infinite fixations for 50000 times
each. The value of target detection threshold 81 was set to 0.952 (Supplementary
Table 1). For the simulation result of each capacity, we calculated the histograms of
fixation duration, fixation distance and saccade amplitude of the initial 20 fixations
and saccades, and the overall distribution of fixation location. All trials were used.
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Then for fixation duration/distance and saccade amplitude, we calculated the B,
between histograms of simulation and experiment data at each ordinal position.
Thus, for each memory capacity value, we obtained one B, for fixation location and
20 B, for each of fixation duration, fixation distance, and saccade amplitude.
Finally, for each of the above three eye movement metrics, the 20 B, were averaged
to obtain a single B..

Simulating visual search. The three models were evaluated for 100,000 trials each.
We randomly rotate the 400 predefined locations around the image center before
each trial to help obtain a smooth distribution of fixation locations. The target
locations were randomly selected with equal probability. Eye movement metrics
were summarized by the same method used in experiment data. We used B, to
quantify the similarity between the histograms of the model’s and humans’ eye
movement metrics.

Model comparison. To compare the relative importance of the three constraints in
the CCTELM model, we evaluated the CCTELM model without each of the con-
straints 100,000 times (using the same parameter values as the full CCTELM
model), and calculated the average B. of fixation duration, saccade amplitude,
fixation location and fixation distance (to the center of the image) distribution. To
estimate the confidence interval of B, we bootstrapped both the experimental and
simulation data 2000 times and calculated 2000 B, values. The 99% confidence
interval was calculated by 2.576 x SD of the B values.

Data availability
The experimental and simulation results are available on Open Science Framework®® at
https://osf.io/ypcwx/.

Code availability
The code for the visual search models is available on Open Science Framework at https://
osf.io/ypcwx/.
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