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An algorithm to quantify intratumor heterogeneity
based on alterations of gene expression profiles
Mengyuan Li1,2,3,4, Zhilan Zhang1,2,3,4, Lin Li1,2,3 & Xiaosheng Wang 1,2,3✉

Intratumor heterogeneity (ITH) is a biomarker of tumor progression, metastasis, and immune

evasion. Previous studies evaluated ITH mostly based on DNA alterations. Here, we devel-

oped a new algorithm (DEPTH) for quantifying ITH based on mRNA alterations in the tumor.

DEPTH scores displayed significant correlations with ITH-associated features (genomic

instability, tumor advancement, unfavorable prognosis, immunosuppression, and drug

response). Compared to DNA-based ITH scores (EXPANDS, PhyloWGS, MATH, and

ABSOLUTE), DEPTH scores had stronger correlations with antitumor immune signatures, cell

proliferation, stemness, tumor advancement, survival prognosis, and drug response. Com-

pared to two other mRNA-based ITH scores (tITH and sITH), DEPTH scores showed stronger

and more consistent associations with genomic instability, unfavorable tumor phenotypes

and clinical features, and drug response. We further validated the reliability and robustness of

DEPTH in 50 other datasets. In conclusion, DEPTH may provide new insights into tumor

biology and potential clinical implications for cancer prognosis and treatment.
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Genomic instability is a major cause of tumor hetero-
geneity, which refers to genetic and phenotypic variation
within (intratumor heterogeneity (ITH)) and between

tumors (intertumor heterogeneity)1. Accordingly, many genomic
feature-based algorithms have been proposed to quantify tumor
heterogeneity, such as ABSOLUTE2, MATH3, EXPANDS4,5, and
PhyloWGS6. Based on DNA copy number alteration (CNA)
profiles, ABSOLUTE evaluates tumor ploidy estimates repre-
senting ITH2. MATH assesses ITH based on somatic mutation
profiles7. EXPANDS predicts clonal subpopulations of tumor
cells representing ITH based on the proportion of cells with
specific mutation profiles4. PhyloWGS infers the subclonal
composition of tumor cells based on their mutations and CNAs6.
Besides genome profiles, transcriptome, proteome, and epigen-
ome profiles were also used to define ITH8. High ITH is often
associated with an unfavorable prognosis in cancer6. Moreover,
ITH often has a prevalent negative correlation with tumor
immunity9–13. Currently, cancer immunotherapies, e.g., the
immune checkpoint blockade (ICB) and chimeric antigen
receptor (CAR) T cell therapies, have demonstrated success in
treating diverse cancers14–16. Nevertheless, only a subset of cancer
patients currently respond to such therapies. Certain predictive
biomarkers for the response to ICB have been identified, such as
PD-L1 expression17, tumor mutation burden (TMB)18, mismatch
repair deficiency (dMMR) or microsatellite instability (MSI)19,
and tumor-infiltrating lymphocyte (TIL) levels20.

Because alterations in genome and epigenome profiles often
lead to heterogeneous gene expression profiles in tumors, defining
ITH based on gene expression profiles is a viable approach21–23.
Park et al. proposed a method (tITH) for evaluating
transcriptome-based ITH using RNA-Seq data24. This method
has exhibited certain effectiveness in evaluating ITH, e.g., the
positive correlation between its ITH and genetic ITH character-
ized by DNA-based methods, and the negative correlation
between the ITH and survival prognosis in the tumor. Never-
theless, because the tITH method is based on the protein–protein
interaction (PPI) network, it is susceptible to PPIs’ reliability.
Also, tITH cannot evaluate ITH when gene expression profiles in
normal samples are not available.

In this study, we proposed the Deviating gene Expression
Profiling Tumor Heterogeneity (DEPTH) algorithm for evaluat-
ing ITH levels at the mRNA level. By analyzing 25 cancer types
from The Cancer Genome Atlas (TCGA) program (https://www.
cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga), we demonstrated that the ITH defined by
DEPTH had the common features of ITH characterized in pre-
vious studies, such as its negative correlation with tumor prog-
nosis and antitumor immunity5,9,12 and positive correlation with
drug resistance25. We further validated these features of ITH
evaluated by DEPTH in more than 10,000 tumor samples apart
from TCGA. We compared our method with six other ITH
evaluation methods, including ABSOLUTE2, MATH3,
EXPANDS4,5, PhyloWGS6, tITH24, and sITH26. Our data showed
that DEPTH is an effective and robust method for evaluating
ITH, and its performance is superior to or comparable to that of
the other methods.

Results
The DEPTH algorithm shows that in a tumor, when most genes
simultaneously display high or simultaneously display low
expression deviations from their mean expression values in
normal or tumor samples, the tumor will have a low-DEPTH
score (low ITH). By contrast, in a tumor, when many genes
exhibit high expression deviations, and while many other genes
exhibit low expression deviations from their mean expression

values, the tumor will have a high DEPTH score (high ITH).
Thus, the ITH defined by DEPTH represents the asynchrony of
transcriptome alterations in tumor cells in a manner.

In silico proof of concept of DEPTH scores. We performed the
in silico simulation to examine whether DEPTH scores indeed
represent ITH in tumors. We created gene expression profiles of
202, 40, and 1375 simulated tumor samples based on three cell
line or single-cell RNA-Seq (scRNA-seq) datasets (Cancer cell
lines27, GSE6940528, GSE11366029,30), respectively. We defined
the expression value of a gene in a simulated sample as the
maximum expression value of the gene in all cells constituting the
sample. Based on the gene expression profiles, we calculated the
DEPTH score of each simulated tumor samples. We observed
strong correlations between the DEPTH scores of the simulated
tumor samples and the numbers of cell lines or single cells they
contained (ρ= 0.94, 0.97, 0.998, respectively) (Fig. 1a). These
results indicate that the more heterogeneous tumor samples
(composed of more different cells) have higher DEPTH scores.
Moreover, based on the cancer cell line dataset27, we produced
10 sets of simulated tumor samples with each set of simulated
samples composed of an equal number (m) of cell lines. We
found that the DEPTH scores had a strong positive correlation
with the numbers of different cancer types the cell lines originate
from in the simulated tumor samples (ρ= 0.999, 0.999, 1, 1,
0.999, 0.999, 1, 1, 0.999, and 1 for m= 62, 49, 46, 42, 35, 32, 31,
30, 29, and 27, respectively) (Fig. 1b). We performed a similar
experiment in the scRNA-seq dataset GSE57872131. Likewise, we
observed a strong positive correlation between the DEPTH
scores and the numbers of different cell lines the single cells
belonged to in the simulated tumor samples (ρ= 1, 1, 0.952,
0.952, 0.881, 0.976, and 0.810 for m= 44, 58, 65, 70, 73, 75, and
94, respectively). These results indicate that the more hetero-
geneous tumor samples (composed of more different types of cell
lines or cancers) have higher DEPTH scores. Collectively, these
experiments demonstrate that DEPTH scores indeed represent
ITH in tumors.

Association of DEPTH scores with genomic instability. Geno-
mic instability often results in increased TMB32. We found that
TMB was positively correlated with DEPTH scores in pan-cancer
(p= 1.26 × 10−115, ρ= 0.26) and in 11 individual cancer types
(false discovery rate (FDR)-adjusted Spearman’s correlation test p
(FDRsp) < 0.05) (Fig. 2a). The cancer types with higher TMB
tended to exhibit higher DEPTH scores than those with lower
TMB. For example, SKCM, which had significant higher TMB
than PRAD (p= 7.61 × 10−116; median TMB: 461.5 versus 52),
displayed higher DEPTH scores than PRAD (p= 5.18 × 10−160;
median DEPTH score: 17.73 versus 2.95). p53 plays a crucial role
in maintaining genomic stability33. We found that TP53-mutated
tumors exhibited remarkably higher DEPTH scores than TP53-
wildtype tumors in pan-cancer (p= 2.21 × 10−13) and in multiple
individual cancer types, including BLCA, BRCA, LIHC, LUAD,
LUSC, PRAD, STAD, and UCEC (FDR < 0.05) (Fig. 2b). Also,
DNA mismatch repair deficiency (dMMR) or microsatellite
instability (MSI) is a prevalent pattern of genomic instability32.
We found that MSI-high (MSI-H) tumors displayed significantly
higher DEPTH scores than MSI-low (MSI-L) or microsatellite
stability (MSS) tumors in the cancers with a high prevalence of
MSI, including COAD, STAD, and ESCA (p < 0.05) (Fig. 2c).
Moreover, we observed that three DNA mismatch repair proteins
(PCNA, MSH6, and MSH2) showed significant positive expres-
sion correlations with DEPTH scores in at least 8 cancer types
(two-sided Student’s t test, FDR < 0.05) (Fig. 2d). We found many
DNA damage response-associated pathways that were more
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highly enriched in high-DEPTH-score than in low-DEPTH-score
tumors in at least five cancer types by GSEA34. These pathways
included DNA replication, base excision repair, homologous
recombination, and mismatch repair (Fig. 2e).

In a recent study35, Knijnenburg et al. identified functionally
deleterious mutations in the genes in nine major DNA damage
repair (DDR) pathways in TCGA pan-cancer. The nine DDR
pathways included mismatch repair, base excision repair,
nucleotide excision repair, the Fanconi anemia (FA) pathway,
homology-dependent recombination, non-homologous DNA end
joining, direct damage reversal/repair, translesion DNA synthesis,
and damage sensor. Based on the mutations in the genes in the
DDR pathways, we classified pan-cancer into pathway-gene-
wildtype and pathway-gene-mutated groups for each of the nine

DDR pathways. The pathway-gene-wildtype indicates no func-
tionally deleterious mutations in the pathway genes, and the
pathway-gene-mutated indicates at least a functionally deleterious
mutation in the pathway genes. Strikingly, we found that DEPTH
scores were significantly higher in the pathway-gene-mutated
group than in the pathway-gene-wildtype group consistently for
the nine DDR pathways (p < 0.05) (Fig. 2f). These results indicate
that the enhanced DEPTH scores are associated with DDR
deficiency, again demonstrating the positive association of
DEPTH scores with genomic instability. Homologous recombi-
nation deficiency (HRD) may lead to large-scale genomic
instability35. Knijnenburg et al. evaluated HRD scores for 9125
TCGA cancer samples by combining the scores of HRD loss of
heterozygosity, large-scale state transitions, and the number of

Fig. 1 In silico simulation experiments using four cell line or single-cell RNA-Seq datasets. a Correlations between DEPTH scores and the numbers of cell
lines or single cells in the simulated tumor samples. b Correlations between DEPTH scores and the numbers of different cancer types the cell lines
originated from or cell lines the single cells belonged to in the simulated tumor samples. ρ, Spearman correlation coefficient. It also applies to the following
figures.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01230-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2020)3:505 | https://doi.org/10.1038/s42003-020-01230-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 2 (Continued)
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telomeric allelic imbalances. We found that DEPTH scores had a
significant positive correlation with HRD scores in pan-cancer
and 11 individual cancer types (FDRSp < 0.05) (Fig. 2g).

Altogether, these data suggest that the DEPTH level has a
strong positive association with genomic instability in cancer.

Associations of DEPTH scores with clinical characteristics.
ITH is associated with poor prognosis in cancer36. Survival
analyses showed that higher DEPTH scores were associated with

worse survival in pan-cancer (log-rank test, p= 3.31 × 10−38,
2.88 × 10−31, 7.4 × 10−14, 2.32 × 10−50 for overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI), and
progression-free interval (PFI), respectively.) (Fig. 3a). Also, in 5
individual cancer types (BRCA, COAD, KIRC, LUAD, and
UCEC), higher DEPTH scores were associated with worse OS
(log-rank test, p < 0.05) (Supplementary Fig. 1a). Among them,
BRCA, COAD, LUAD, and KIRC are highly prevalent cancer
types.
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Fig. 2 Association of DEPTH scores with genomic instability. a The positive correlations between tumor mutation burden (TMB) and DEPTH scores in
pan-cancer and in 11 individual cancer types. Spearman’s correlation test, false discovery rate (FDR), and correlation coefficient (ρ) are shown. The FDR
was estimated by the Benjamini and Hochberg method66 to adjust for p-values in multiple tests. TMB, the total somatic mutation count in the tumor.
b TP53-mutated tumors display significantly higher DEPTH scores than TP53-wildtype tumors in pan-cancer and in multiple individual cancer types (FDR <
0.05). c MSI-high (MSI-H) tumors have significantly higher DEPTH scores than MSI-low (MSI-L)/microsatellite stability (MSS) tumors in COAD, STAD,
and ESCA (p≤ 0.05). MSI, microsatellite instability. d The positive associations between the expression of DNA mismatch repair proteins (PCNA, MSH6,
and MSH2) and DEPTH scores within multiple individual cancer types (two-sided Student’s t test, FDR < 0.05). e The four DNA damage response-
associated pathways more highly enriched in high-DEPTH-score than in low-DEPTH-score tumors within multiple individual cancer types identified by
GSEA34 (FDR < 0.05). high-DEPTH-score, DEPTH scores in the upper third. low-DEPTH-score, DEPTH scores in the bottom third. They also apply to the
following figures. f Comparison of DEPTH scores between the pathway-gene-mutated and pathway-gene-wildtype groups for nine DDR pathways. DDR,
DNA damage repair. BER, base excision repair. MMR, mismatch repair; BER, base excision repair. NER, nucleotide excision repair. FA, Fanconi Anemia.
HDR, homology-dependent recombination. NHEJ, non-homologous DNA end joining. DR, direct damage reversal/repair. TLS, translesion DNA synthesis.
g The positive correlation between DEPTH scores and HRD scores in pan-cancer and in 11 individual cancer types. HRD, homologous recombination
deficiency. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001, NS: not significant. It also applies to the following figures.
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Fig. 3 Association of DEPTH scores with clinical characteristics. a Kaplan−Meier survival curves displaying the negative correlation between DEPTH
scores and survival (OS, DSS, PFI, and DFI) in pan-cancer. The log-rank test p-values, hazard ratio (HR), and 95% confidence interval (CI) are shown. OS,
overall survival. DSS, disease-specific survival. PFI, progression-free interval. DFI, disease-free interval. b Comparison of DEPTH scores between different
breast cancer subtypes (luminal A&B, HER2-enriched, and basal-like) in TCGA and METABRIC datasets. c DEPTH scores are significantly higher in BRAF-
mutated than in BRAF-wildtype COAD and are significantly higher in the invasive than in the MSI and CIN subtypes of COAD. CIN, chromosomal instability.
d DEPTH scores are significantly lower in the TRU than in the PP and PI subtypes of LUAD, and TRU has a favorable overall survival than the PP and PI
subtypes; DEPTH scores are significantly lower in EGFR-mutated than in EGFR-wildtype LUAD. TRU, terminal respiratory unit. PI, proximal-inflammatory. PP,
proximal-proliferative. e DEPTH scores are significantly higher in MSI and CIN than in GS GI cancers. GS, genome stable. GI, gastrointestinal. HM-SNV,
hypermutated-SNV. EBV, Epstein-Barr virus. f DEPTH scores increase with tumor progression in pan-cancer and in multiple individual cancer types. The
DEPTH scores between late-stage (stage III-IV) and early-stage (stage I-II), between large tumor size (T3-4) and small tumor size (T1-2), and between high-
grade (G3-4) and low-grade (G1-2) tumors were compared. The one-sided Mann–Whitney U test FDR < 0.05 indicates the statistical significance. g The
positive correlations of DEPTH scores with the expression levels of cell proliferation marker genes (MKI67, TOP2A, and RACGAP1) and proliferation signature
scores in pan-cancer and in multiple individual cancer types (FDRsp < 0.05). h The positive correlations between DEPTH scores and tumor stemness scores in
pan-cancer and in 20 individual cancer types (FDRsp < 0.05). Proliferation signature and tumor stemness scores were calculated by the single-sample gene-
set enrichment analysis34. FDRsp, Spearman’s correlation test adjusted p-value (FDR). It also applies to the following figures.
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We further correlated DEPTH scores with clinical features
within and across subtypes of several prevalent cancer types,
including BRCA, COAD, LUAD, and gastrointestinal (GI) pan-
cancer. In BRCA, we compared DEPTH scores between triple-
negative breast cancer (TNBC) and non-TNBC, which were
classified based on immunohistochemical (IHC) testing. We
found that DEPTH scores were significantly higher in TNBC than
in non-TNBC (p= 8.24 × 10−9). Furthermore, we found that
DEPTH scores were negatively associated with OS in non-TNBC
(log-rank test, p= 0.002) but not in TNBC (p= 1). A possible
explanation is that the variation of DEPTH scores was much
lower in TNBC than in non-TNBC (2.07 versus 3.09) so that the
high-DEPTH-score and low-DEPTH-score tumor samples were
not separated in TNBC as clearly as in non-TNBC. Also, we
compared DEPTH scores between luminal A&B (ER+), HER2-
enriched, and basal-like breast cancer subtypes, which were
determined by the PAM50 assay37. We found that DEPTH scores
were significantly lower in luminal A&B than in HER2-enriched
or basal-like subtype (p < 0.001) and that DEPTH scores were
lower in HER2-enriched versus basal-like subtype (p= 0.07)
(Fig. 3b). We observed similar results in another large-scale breast
cancer genomics dataset METABRIC38 (Fig. 3b). Furthermore,
DEPTH scores displayed a significant negative correlation with
OS in luminal A&B (log-rank test, p= 0.005) but not in HER2-
enriched or basal-like subtype (p > 0.1). Again, the possible
explanation is that the variation of DEPTH scores was much
higher in luminal A&B than in HER2-enriched or basal-like
subtype (2.86 versus 1.26 or 2.06). Overall, these results indicate
that DEPTH scores conform to the prognostic risk in breast
cancer in that the luminal A&B subtype often has a better
prognosis than the HER2-enriched and basal-like/TNBC subtypes
and the basal-like/TNBC subtype has the worst prognosis among
all breast cancer subtypes39. Interestingly, we found that DEPTH
scores were markedly lower in luminal A than in luminal B
subtype (p= 8.31 × 10−20). This result again suggests the positive
association between DEPTH scores and breast cancer risk since
luminal A cancers have the best prognosis, and luminal B cancers
tend to develop slightly faster and have a somewhat worse
prognosis than luminal A cancers40.

In COAD, we compared DEPTH scores between BRAF-
mutated and BRAF-wildtype tumors and found that the BRAF-
mutated COAD had significantly higher DEPTH scores than
BRAF-wildtype COAD (p= 0.03) (Fig. 3c). This result suggests
that the elevated DEPTH scores are associated with worse clinical
outcomes in light of the significant association between BRAF
mutations and poorer prognosis in COAD41. When comparing
DEPTH scores between three mRNA subtypes (MSI, chromoso-
mal instability (CIN), invasive) of COAD42, we found that the
invasive subtype had higher DEPTH scores than the other two
subtypes (p < 0.05) (Fig. 3c), again suggesting a significant
association between high DEPTH scores and unfavorable clinical
outcomes in COAD. Furthermore, survival analyses showed that
the elevated DEPTH scores were associated with worse OS trends
in non-MSI and MSI COAD (Supplementary Fig. 1b). In LUAD,
we compared DEPTH scores between three transcriptional
subtypes: terminal respiratory unit (TRU), proximal-
inflammatory (PI), and proximal-proliferative (PP). We found
that DEPTH scores were the lowest in TRU tumors (p= 6.95 ×
10−17, 4.96 × 10−11 for TRU versus PP and TRU versus PI,
respectively) (Fig. 3d). These results suggest a negative association
between DEPTH scores and clinical outcomes in LUAD since
TRU is prognostically favorable compared with the other
subtypes (Fig. 3d). The EGFR mutation is associated with a more
favorable prognosis in lung cancer43,44. We found that EGFR-
mutated LUAD had lower DEPTH scores than EGFR-wildtype
LUAD (p= 0.004) (Fig. 3d). Again, this result suggests a negative

association between DEPTH scores and prognosis in LUAD. The
GI pan-cancer included GI tract adenocarcinomas (GIACs)
composed of 79 esophageal, 383 gastric, 341 colon, and 118
rectal cancers, which were classified into five subtypes: Epstein-
Barr virus (EBV), MSI, hypermutated-SNV (HM-SNV), CIN, and
genome stable (GS)45. DEPTH scores were significantly higher in
MSI and CIN versus GS tumors (p= 1.21 × 10−8, 9.10 × 10−8 for
MSI versus GS and CIN versus GS, respectively) (Fig. 3e),
confirming that the ITH defined by DEPTH is associated with
genomic instability.

Tumor stage refers to the range of the primary tumor and the
extent of tumor cells spread in the body. We found that DEPTH
scores were significantly higher in late-stage (stage III-IV) than in
early-stage (stage I-II) tumors in pan-cancer (p= 9.09 × 10−8)
and in 5 individual cancer types (LIHC, THCA, KIRC, LUAD,
and HNSC) (FDR < 0.05) (Fig. 3f). Furthermore, we compared
DEPTH scores between different substages in the cancers with
related data available. We found that within the same stage,
DEPTH scores likely increased with the advancement of substage
in pan-cancer, e.g., stage Ib > Ia, IIc > IIa or IIb, and IIIb > IIIa (p
< 0.001) (Supplementary Fig. 1c); the same trend was observed
within individual cancer types, such as Ib > Ia in ESCA, LUAD,
LUSC, and CESC, IIb > IIa in CESC, and IIIb > IIIa in BRCA and
UCEC (p < 0.05). These results indicate that DEPTH scores are
likely to increase with tumor advancement. We classified tumors
into two groups based on tumor size (T) and compared DEPTH
scores between two groups (T1-2 versus T3-4). We found that
DEPTH scores were significantly higher in T3-4 than in T1-2
tumors in pan-cancer (p= 5.20 × 10−16) and in 8 individual
cancer types (THCA, LIHC, PRAD, CHOL, KIRC, HNSC, LUSC,
and LUAD) (FDR < 0.05) (Fig. 3f). Tumor grade indicates how
quickly a tumor is likely to grow and spread based on the
abnormality degree of tumor cells compared to normal cells. In 9
cancer types with tumor grade information available, DEPTH
scores were significantly higher in high-grade (G3-4) than in low-
grade (G1-2) tumors in 4 individual cancer types (HNSC, KIRC,
LIHC, and UCEC) (FDR < 0.05) (Fig. 3f). Altogether, these results
indicate that the DEPTH score-based ITH increases with tumor
progression, particularly in LIHC, HNSC, and KIRC.

The expression of Ki67 (encoded by the MKI67 gene) is a
marker for tumor cell proliferation46. We found that DEPTH
scores positively correlated with MKI67 expression levels in 13
individual cancer types (FDRSp < 0.05) (Fig. 3g). In the pan-
cancer analysis, DEPTH scores had a significant positive
correlation with MKI67 expression levels (p= 4.16 × 10−127,
ρ= 0.25). We also examined the association between two other
proliferation markers (TOP2A and RACGAP147) and DEPTH
scores in cancer. Likewise, we observed significant positive
correlations of TOP2A and RACGAP1 expression levels with
DEPTH scores in 13 and 15 cancer types, respectively (FDRsp <
0.05) (Fig. 3g), as well as in pan-cancer (TOP2A: p= 6.98 ×
10−93, ρ= 0.21; RACGAP1: p= 4.14 × 10−157, ρ= 0.28).
Furthermore, we analyzed the correlation between DEPTH scores
and a proliferation signature composed of 7 marker genes48

and found that they had a significant positive correlation in pan-
cancer and in 21 individual cancer types (FDRsp < 0.05) (Fig. 3g).
Tumor stem cell-associated characteristics (“stemness”) are
associated with ITH and poor outcomes in cancer11. Interestingly,
we observed significant positive correlations between
DEPTH scores and tumor stemness scores in pan-cancer (p=
4.86 × 10−52, ρ= 0.16) and in 20 individual cancer types (FDRsp <
0.05) (Fig. 3h).

Collectively, these results indicate that the high DEPTH ITH
level is likely associated with worse clinical outcomes in cancer.
This is consistent with previous studies showing that ITH was an
adverse prognostic factor11.
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Associations of DEPTH scores with antitumor immune
response. Many studies have shown that ITH is associated with
reduced antitumor immune response10,11,13. We analyzed the
correlations between DEPTH scores and immune signature
scores in pan-cancer and within 25 individual cancer types. The
immune signature scores, representing the enrichment levels of
immune signatures in tumors, were the average expression levels

of all marker genes of immune signatures. A total of five anti-
tumor immune signatures were analyzed, including B cells, CD8
+ T cells, human leukocyte antigen (HLA), interferon (IFN)
response, and tumor-infiltrating lymphocytes (TILs). As expec-
ted, we observed significant inverse correlations of DEPTH scores
with B cell, CD8+ T cell, HLA, IFN, and TIL scores in pan-cancer
(FDR < 1.0 × 10−100, ρ ≤−0.25), and in 23, 18, 17, 19, and 19
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individual cancer types, respectively (FDRsp < 0.05) (Fig. 4a).
Moreover, DEPTH scores were inversely correlated with the
ratios of immune-stimulatory signature (CD8+ T cells) to
immune-inhibitory signature (CD4+ regulatory T cells) in pan-
cancer (p= 5.14 × 10−181, ρ=−0.31) and in 12 individual cancer
types (FDRsp < 0.05) (Fig. 4b). These results suggest that the high
DEPTH ITH level is associated with reduced antitumor immu-
nity, consistent with the inverse correlation between ITH and
antitumor immune response10,11,13. Because antitumor immune
signatures have a positive association with survival prognosis in
cancer49,50 and DEPTH scores were negatively associated with
them, the negative correlation between DEPTH scores and sur-
vival prognosis in cancer could be a consequence of the reduced
antitumor immune signatures in high-DEPTH-score tumors. To
exclude this possibility, we used the Cox proportional hazards
model for multivariate (DEPTH score and TILs score) survival
analysis in TCGA pan-cancer and in individual cancer types. We
found that the elevated DEPTH scores were negatively associated
with the survival in pan-cancer (OS, DSS, DFI, and PFI) and three
individual cancer types (BRCA, COAD, and KIRC) (p < 0.02)
(Supplementary Fig. 2), consistent with the results from the
previous univariate survival analysis. This suggests that the
DEPTH score alone has a prognostic power.

We found that DEPTH scores were inversely associated with
PD-L1 expression levels in pan-cancer (p= 1.7 × 10−38, ρ=
−0.14) and in 8 individual cancer types (FDRsp < 0.05) (Fig. 4c).
Because both PD-L1 expression17 and TIL infiltration levels20 are
positive predictive factors for immunotherapy response and
DEPTH scores have a negative correlation with both of them, we
expected that the high DEPTH scores would be associated with
the reduced response to immunotherapy. As expected, in a
melanoma cohort (Hugo cohort51) and a KIRC cohort (Miao
cohort52) receiving the ICB immunotherapy, the responsive
group had significantly lower DEPTH scores than the non-
responsive group (p= 0.03, 0.09 for Hugo and Miao cohorts,
respectively) (Fig. 4d). Furthermore, on the basis of DEPTH
scores, we divided patients into two groups (high-DEPTH-score
(DEPTH scores > median) versus low-DEPTH-score (DEPTH
scores < median)) and compared the ICB response rate between
both groups. We found that the high-DEPTH-score group had a
lower response rate than the low-DEPTH-score group (0% versus
38% in the Hugo cohort; 37.5% versus 62.5% in the Miao cohort)
(Fig. 4d). These results suggest that the high DEPTH ITH level is
likely to be associated with the reduced response to immunother-
apy in cancer.

Association of DEPTH scores with drug response in cancer.
Based on the data from the Genomics of Drug Sensitivity in
Cancer (GDSC) project (https://www.cancerrxgene.org), we
found that DEPTH scores had significant correlations with drug
sensitivity (IC50 values) to 180 (68%) of 265 compounds tested in
cancer cell lines (FDRsp < 0.05) (Supplementary Data 1). Among

the 180 compounds, 144 displayed a significant negative corre-
lation of IC50 values with DEPTH scores versus 36 showing a
significant positive correlation in the cancer cell lines (Fig. 5a and
Supplementary Data 1). These data suggest that the DEPTH
score-based ITH is associated with the sensitivity to a broad
spectrum of anticancer drugs. Interestingly, we found many
compounds to which the increased sensitivity was associated with
the high ITH (Supplementary Data 1). A possible explanation is
that the elevated expression of oncogenic signatures in high-ITH
tumors enhances their sensitivity to relevant inhibitors. Further-
more, we analyzed the correlation between DEPTH scores and
drug response in cancer patients using TCGA, TARGET, and
three GEO (GSE1379, GSE107850, and GSE123728) datasets. In
TCGA, because different types of cancer patients were treated
with different drugs and the drug usage data were incomplete in
many individual cancer types, we performed the analysis only in
pan-cancer. When all drugs were taken into account, the
responsive group had significantly lower DEPTH scores than the
non-responsive group (p= 0.0001) (Fig. 5b). In TARGET, we
found that acute myeloid leukemia (AML) patients with minimal
residual disease (MRD) at the end of the second course of
induction therapy had significantly higher DEPTH scores than
those without MRD (p= 0.059) (Fig. 5c). Moreover, in the acute
lymphoblastic leukemia (ALL) phase II patients, DEPTH scores
displayed a significant positive correlation with the MRD per-
centages after 8 days of remission induction therapy (p= 0.012,
ρ= 0.25) (Fig. 5c). In GSE137953, the breast cancer patients
responsive to tamoxifen had lower DEPTH scores than the
patients not responsive to tamoxifen (p= 0.03) (Fig. 5d). In
GSE10785054, the lower-grade glioma patients who were
responsive to the combination therapy of chemotherapy (temo-
zolomide) and radiotherapy had lower DEPTH scores than the
patients who were not responsive to such therapy (p= 0.0007)
(Fig. 5d). In GSE12372855, the melanoma patients with favorable
response to pembrolizumab had lower DEPTH scores than the
patients with an unfavorable response to the drug (p= 0.088)
(Fig. 5d). Overall, these data indicate that DEPTH scores likely
have a significant association with drug response in cancer.

Molecular features associated with DEPTH scores. We identi-
fied 262 genes whose expression alteration had a strong positive
correlation with DEPTH scores in at least five cancer types (FDR
< 0.05, ρ > 0.5) (Fig. 6a and Supplementary Data 2). Notably,
many of these genes encode human cytokines and growth factors,
including CCL14, CCL21, CTSG, CXCL12, FGF10, FGF7, GDF10,
GREM2, IL33, KL, OGN, PDGFD, and PDGFRA. The essential
roles of growth factors and cytokines in driving cancer cell pro-
liferation and invasion have been well recognized56,57. The 262
genes also included many marker genes of human leukocyte and
stromal cell differentiation, including ABCB1, ACKR1, CD1C,
CD34, CLEC10A, GYPC, JAM2, KIT, PDGFRA, SELP, SIGLEC6,
and TEK. A considerable number of transcription factor genes

Fig. 4 Association of DEPTH scores with antitumor immunity and immunotherapy response. a The significant inverse correlations of DEPTH scores with
immune signature (B cells, CD8+ T cells, HLA, IFN, and TILs) scores in pan-cancer and in many individual cancer types (FDRsp < 0.05). The scores of
immune signatures are the mean expression levels of their marker genes in the tumor. HLA, human leukocyte antigen. IFN, interferon. TILs, tumor-
infiltrating lymphocytes. b The significant inverse correlations of DEPTH scores with the ratios of immune-stimulatory signature (CD8+ T cells) to
immune-inhibitory signature (CD4+ regulatory T cells) in pan-cancer and in 12 individual cancer types (FDRsp < 0.05). The ratios are the log2-transformed
values of the mean expression levels of CD8+ T cell marker genes divided by the mean expression levels of CD4+ regulatory T cell marker genes. c The
significant inverse correlations between DEPTH scores and PD-L1 expression levels in pan-cancer and in eight individual cancer types (FDRsp < 0.05). d The
inverse correlations of DEPTH scores with the response to immunotherapy response in a melanoma cohort (Hugo cohort51) and a kidney cancer cohort
(Miao cohort52) receiving the immune checkpoint blockade therapy. The DEPTH scores were compared between the responsive and non-responsive
groups using the one-sided Mann–Whitney U test. The immunotherapy response rates in the high-DEPTH-score (DEPTH scores > median) tumors and in
the low-DEPTH-score (DEPTH scores < median) tumors are presented.
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were also in the 262-gene list, including AFF3, CBX7, FHL1,
FHL5, FOXF1, HLF, LDB2, LMO3, MEF2C, MEOX1, MEOX2,
NR2F1, PGR, PKNOX2, RUNX1T1, TCF21, ZBTB16, ZEB1, and
ZNF208. Pathway analysis by GSEA34 revealed that these genes
were mainly involved in pathways of calcium signaling, cell
adhesion molecules, ABC transporters, focal adhesion, regulation
of actin cytoskeleton, chemokine signaling, leukocyte transen-
dothelial migration, pathways in cancer, tight junction, MAPK
signaling, ECM-receptor interaction, tyrosine metabolism, and
gap junction (Fig. 6a). These results indicate that the expression
alterations in the genes involved in cell growth and proliferation,
tumor-stroma crosstalk, and immune signatures may contribute
significantly to the DEPTH score-based ITH.

We found 15 genes whose somatic mutations were associated
with increased DEPTH scores in at least five cancer types (FDR <
0.1). These genes included AHNAK2, TP53, PLEC, COL5A1,
FAT3, PCDH17, RIMS1, ASH1L, CDH23, DNAH17, DYNC2H1,
MYCBP2, SLIT3, TRRAP, and USH2A. Interestingly, we found 9
of the 15 genes whose mutations were significantly associated
with worse OS in pan-cancer (log-rank test, p < 0.05) (Supple-
mentary Fig. 3). This is consistent with previous observations that
the high DEPTH ITH level was associated with unfavorable
clinical outcomes in cancer. Notably, many of these genes were
involved in the calcium signaling pathway, including AHNAK2,
PLEC, COL5A1, FAT3, PCDH17, RIMS1, CDH23, and SLIT3.

Besides, several genes, including TP53 and TRRAP, were involved
in DDR regulation to maintain genomic stability.

We identified 40 proteins whose expression levels were
significantly higher in high-DEPTH-score than in low-DEPTH-
score tumors in at least five cancer types (two-sided Student’s t
test, FDR < 0.05) (Supplementary Data 3). These proteins were
mainly involved in cell cycle regulation (such as Cyclin_B1,
Cyclin_E1, Cyclin_E2, FoxM1, and Chk2), DDR (such as PCNA,
MSH6, MSH2, XRCC1, BAP1, and Ku80), and metabolism (such
as GAPDH, ACC1, TIGAR, and FASN). Also, there were 33
proteins whose expression levels were significantly lower in high-
DEPTH-score than in low-DEPTH-score tumors in at least five
cancer types (two-sided Student’s t test, FDR < 0.05) (Supple-
mentary Data 3). Some of these proteins were tumor suppressors,
including Rb, FOXO3, and p27, and many proteins were kinases
and involved in the regulation of cell proliferation, differentiation,
and apoptosis, such as c-KIT, AKT, EGFR, MAPK1/3, PRKCA,
SRC, ACVRL1, and JNK2.

GSEA34 identified a number of KEGG pathways that were
highly enriched in high-DEPTH-score tumors and low-DEPTH-
score tumors (FDR < 0.05). The pathways highly enriched in high-
DEPTH-score tumors in at least five cancer types mainly associated
with DNA damage response and cell cycle, consistent with
previous results that the upregulated proteins in high-DEPTH-
score tumors were associated with cell cycle regulation and DDR.

Fig. 5 Association of DEPTH scores with drug response in cancer. a Correlations between DEPTH scores and drug sensitivity (IC50 values) of 265
compounds in cancer cell lines. The names of compounds with |ρ | > 0.3 are shown. b Comparison of DEPTH scores between the drug-responsive group
and the non-responsive group in TCGA pan-cancer. c Comparison of DEPTH scores between the AML patients with MRD at the end of the second course
of induction therapy and those without MRD, and the correlation between DEPTH scores and the MRD percentages after 8 days of remission induction
therapy in the ALL phase II patients, using the TARGET datasets. AML, acute myeloid leukemia. ALL, acute lymphoblastic leukemia. MRD, minimal residual
disease. d DEPTH scores are significantly higher in the cancer patients with better drug response than in those with worse drug response, as shown in three
GEO datasets (GSE137953, GSE10785054, and GSE12372855).
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The pathways highly enriched in low-DEPTH-score tumors were
mainly immune relevant, including cytokine–cytokine receptor
interaction, Jak–STAT signaling, leukocyte transendothelial migra-
tion, chemokine signaling, hematopoietic cell lineage, and intestinal
immune network for IgA production (Fig. 6b). Again, these results
indicate the strong inverse association between DEPTH scores and
antitumor immune signatures.

DEPTH scores across and within individual cancer types. We
used the Shannon diversity index (SDI) to define the DEPTH
score diversity in each cancer type, where a high index value
indicates a highly diverse ITH distribution and a low value
indicates a homogenous ITH distribution in a cancer type.
Among the 25 cancer types, PAAD, CHOL, SKCM, GBM, and
LIHC had the highest SDI values, while OV, KICH, ESCA,
THCA, and UCEC had the lowest SDI values (Fig. 7a). The SDI
score reflects the variation of DEPTH scores within a cancer type
in that they had a strong positive correlation across the 25 cancer
types (ρ= 0.96) (Fig. 7a). The SDI score also indicates the

intertumor heterogeneity across the tumor samples in the same
cancer type. We found that the SDI scores displayed a negative
correlation with the median tumor purity (ρ=−0.42) and a
positive correlation with the median ploidy scores across the 25
cancer types (ρ= 0.41) (Fig. 7a). Moreover, the cancer types with
high SDI scores (> median) had a higher median TMB than the
cancer types with low SDI scores (< median) (p= 0.06) (Fig. 7b).
These results indicate that the diversity of DEPTH score-based
ITH distribution is positively associated with genomic instability,
while it is negatively associated with tumor purity. Furthermore,
like certain DNA-based ITH evaluation methods5,58, we calcu-
lated the number of clones in each tumor sample based on
DEPTH scores. We defined the clone number in a tumor sample
as the ratio (rounded number) of its DEPTH score to the smallest
DEPTH score in pan-cancer. Within pan-cancer, the inferred
clone numbers ranged between 1 and 24, with 98% of the tumors
encompassing at least 3 clones and 80% having less than 10
clones (Fig. 7c and Supplementary Data 4). We correlated the
clone numbers inferred by DEPTH with those inferred by two

Fig. 6 Genes and pathways whose expression alteration or enrichment levels are associated with DEPTH scores in cancer. a Genes whose expression
alteration is strongly associated with DEPTH scores in at least five cancer types (FDR < 0.05, ρ > 0.5), and their associated pathways identified by GSEA34

(FDR < 0.05). b The immune-related pathways highly enriched in low-DEPTH-score versus high-DEPTH-score tumors in at least five cancer types
identified by GSEA34 (FDR < 0.05).
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DNA-based methods5,58 in pan-cancer and found that they had
significant correlations (p < 0.001, ρ= 0.34, 0.13, respectively)
(Fig. 7d). Within individual cancer types, SKCM and TGCT had
relatively high clone numbers, while PRAD and THCA had low
clone numbers (Fig. 7e), consistent with the results inferred by
EXPANDS4,5. The clone numbers in SKCM ranged between 7
and 23 (median = 19), with 98% of tumors encompassing at least
10 clones; the clone numbers in TGCT ranged between 8 and 24
(median = 20), with 99% of tumors encompassing more than 10
clones. In contrast, the clone numbers in PRAD ranged between 1
and 14 (median = 3), with 93% of tumors having no more than 5
clones; the clone numbers in THCA ranged between 1 and 10
(median = 5), with 68% of tumors having no more than 5 clones.
Interestingly, SKCM had high SDI and high clone numbers,
suggesting that this type of cancer is characterized by high
intertumor and ITH. In contrast, THCA displayed low SDI and
low clone numbers, suggesting its low intertumor and ITH. The
inferior tumor heterogeneity may explain why THCA is generally
unaggressive and has an excellent prognosis59.

Association of DEPTH scores with tumor purity. We found
that high DEPTH scores were significantly associated with
increased tumor purity in 15 cancer types (FDRsp < 0.05)
(Fig. 8a). This is in line with the finding that high DEPTH scores
were associated with reduced TIL levels. Meanwhile, this indicates
that the ITH defined by DEPTH is more prominent in tumor cells
than in non-tumor cells. To correct the effect of tumor purity on
the associations of DEPTH scores with immune signatures and
genomic instability, we used logistic regression with two pre-
dictors (DEPTH score and tumor purity) to predict the five
antitumor immune signature scores and TMB in pan-cancer and
25 individual cancer types. We observed that the DEPTH score
was a significant negative predictor for the antitumor immune
signatures in most cases (Fig. 8b and Supplementary Fig. 4).
Meanwhile, the DEPTH score was a positive predictor for TMB
in most cases, where the β value was greater than 1 in 10 indi-
vidual cancer types (Fig. 8c). In pan-cancer, DEPTH score was a
significant positive predictor for TMB (TMB: β= 0.63, p= 2.66 ×
10−13). Also, DEPTH scores still displayed a significant inverse
correlation with survival prognosis in pan-cancer and multiple
individual cancer types after correcting tumor purity (Fig. 8d).
These results suggest that DEPTH scores are prominently asso-
ciated with immune signatures, genomic instability, and survival
prognosis in cancer, regardless of tumor purity. To further
demonstrate that the DEPTH score is an authentic measure of
ITH, we calculated the DEPTH scores in the TCGA and
GTEx normal tissue whose tumor purity is supposed to be zero.
As expected, in pan-cancer and 25 individual cancer types,
the tumors had much higher DEPTH scores than normal tissue
(p < 0.05) (Fig. 8e).

Relationship between different ITH measures. We explored the
correlation between ITH scores defined by seven different
methods (DEPTH, tITH24, sITH26, PhyloWGS6, EXPANDS4,5,
ABSOLUTE2, and MATH3) in TCGA pan-cancer and individual
cancer types. As expected, 19 of the 21 pairwise correlations were
significantly positive in pan-cancer (p < 0.01, 0.09 ≤ ρ ≤ 0.55)
(Fig. 9). The strongest correlation was observed between DEPTH
and tITH (ρ= 0.55), and the next was between DEPTH and sITH
(ρ= 0.50), suggesting that DEPTH scores have a stronger cor-
relation with the other mRNA-based ITH scores than with the
DNA-based ITH scores. Surprisingly, the correlation between
DEPTH and sITH was stronger than that between tITH and sITH
(ρ= 0.30), although both tITH and sITH were developed based
on the Jensen-Shannon Divergence measure24,26. Among the

DNA-based methods, PhyloWGS and ABSOLUTE had the
strongest correlation (ρ= 0.30), and the correlations of Phy-
loWGS with EXPANDS and MATH were also stronger than
those between EXPANDS, ABSOLUTE, and MATH. A potential
reason behind this is that PhyloWGS evaluates the ITH based on
both mutations and CNAs in tumor cells to make it correlative
with both mutations-based (EXPANDS and MATH) and CNAs-
based (ABSOLUTE) methods.

Within individual cancer types, the correlations between ITH
scores derived from the different methods were mostly positive,
and few were negative (Supplementary Data 5). DEPTH scores
were positively correlated with ITH scores from tITH, sITH,
PhyloWGS, EXPANDS, MATH, and ABSOLUTE in 25, 15, 6, 3,
4, and 6 cancer types, respectively (FDRsp < 0.05). DEPTH
showed the strongest correlation with tITH in almost all 25
cancer types (0.53 ≤ ρ ≤ 0.90) and showed a strong correlation
with sITH in 15 cancer types (0.28 ≤ ρ ≤ 0.71). The correlation
between tITH and sITH was significant in 9 cancer types (0.16 ≤
ρ ≤ 0.61) but was likely to be weaker than that between DEPTH
and sITH in almost all individual cancer types analyzed
(Supplementary Data 5). The other correlations significant in
more than 10 cancer types were those between ITH scores from
the DNA-based methods, including MATH versus ABSOLUTE,
MATH versus PhyloWGS, and ABSOLUTE versus PhyloWGS.
Overall, these results indicate that the ITH measures within the
DNA or mRNA level are more correlated than those between
DNA and mRNA levels.

Validation of DEPTH scores in other datasets. To demonstrate
the DEPTH algorithm’s reliability and robustness, we analyzed
the correlations of DEPTH scores with clinical features and
immune signatures in 42 other gene expression profiling datasets
generated by different technologies and platforms and containing
different numbers of genes. In 37, 33, 37, 27, 34 datasets, DEPTH
scores showed significant positive correlations with stemness
scores, MKI67, TOP2A, and RACGAP1 expression levels, and
proliferation signature scores, respectively (Spearman’s correla-
tion test, p < 0.05) (Fig. 10a). In 22 datasets, DEPTH scores had
significant inverse correlations with at least three of the five
immune signatures, and in 17 datasets, DEPTH scores had sig-
nificant inverse correlations with the ratios of CD8+/CD4+
regulatory T cells (Spearman’s correlation test, p < 0.05)
(Fig. 10b). In three large-scale datasets, including breast cancer
datasets E-MTAB-6703 (sample size n= 2302) and METABRIC
(n= 1980), and gastric cancer dataset ACRG (n= 300), the high-
DEPTH-score tumors showed significantly worse OS than the
low-DEPTH-score tumors (log-rank test, p < 0.05) (Fig. 10c). In
addition, in 11 datasets involving the tumor grade phenotype
data, DEPTH scores were remarkably higher in high-grade than
in low-grade tumors in 7 datasets (p < 1.0 × 10−4) (Fig. 10d).

In TARGET, the AML patients with certain cytogenetic
abnormalities, such as t(9;11)(p22;q23), t(10;11)(p11.2;q23), del5q,
trisomy 21, and MLL1 translocation, had significantly higher
DEPTH scores than the AML patients without such abnormalities
(p < 0.05) (Fig. 10e), confirming the positive correlation between
DEPTH scores and chromosomal/genomic instability. Moreover,
DEPTH scores had a significant positive correlation with the bone
marrow leukemic blast percentages of AML patients (p= 0.003,
ρ= 0.27) (Fig. 10f). DEPTH scores were higher in the AML
patients at the undifferentiated stage (M0) than in those at the
differentiated stage (M1-7) and were higher in the AML patients
with other sites of relapse than in those without other sites of
relapse (p < 0.05) (Fig. 10f). Furthermore, the high-risk AML
patients showed higher DEPTH scores than the low-risk AML
patients, and we observed a similar result in neuroblastoma (NBL)
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patients (p= 0.04, 0.003 for AML and NBL, respectively) (Fig. 10g).
The pan-cancer analysis showed that the high DEPTH scores were
associated with worse OS (log-rank test, p= 0.014) (Fig. 10h).
These results confirmed the positive correlation between DEPTH
scores and clinical risk in cancer.

Overall, these results obtained from validation datasets were
consistent with the findings in TCGA datasets, demonstrating the
reliability and robustness of the DEPTH algorithm in evaluating
the ITH level.

Discussion
ITH is associated with tumor progression, immune evasion, and
drug resistance. Therefore, the ITH level is a biomarker of cancer

prognosis and therapy response. Most of the previous studies
evaluating ITH levels were based on DNA alterations, and a few
were based on mRNA alterations. In this study, we proposed the
DEPTH algorithm, a new mRNA-based method for evaluating
ITH. We demonstrated that high DEPTH scores have a prevalent
association with the common features of high-ITH tumors, e.g.,
genomic instability, tumor advancement, unfavorable prognosis,
immunosuppression, and drug resistance. We compared DEPTH
with the other six methods for evaluating ITH and found that
DEPTH scores tended to display a stronger and more consistent
correlation with these features than the ITH scores derived from
the other methods in TCGA pan-cancer and 25 individual cancer
types (Supplementary Note 1). Notably, compared to two mRNA-
based methods24,26, particularly the gene expression profiling

Fig. 7 Comparison of the DEPTH score-based ITH across and within individual cancer types. a The Shannon diversity index (SDI) values and their
association with the variation of DEPTH scores, the median of tumor purity, and median tumor ploidy scores in 25 cancer types. b The cancer types with
high SDI scores (> median) show a higher median TMB than the cancer types with low SDI scores (< median). c Clone number distribution inferred by
DEPTH across cancer types. d Correlations between the clone numbers inferred by DEPTH and those inferred by EXPANDS4, 5 and PhyloWGS6 in pan-
cancer. e Clone number distribution inferred by DEPTH within individual cancer types.
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alterations-based method tITH24, DEPTH exhibits certain
superiorities in quantifying ITH. First, DEPTH scores show
stronger associations with genomic instable features, such as high
TMB, TP53 mutations, and HRD. Second, high DEPTH scores
have more significant associations with unfavorable clinical fea-
tures, including poor survival, tumor advancement, strong tumor
cell proliferation potential, and high tumor stemness. Finally,
high DEPTH scores have a stronger and more consistent asso-
ciation with drug response.

In general, the correlation between ITH scores from the same
molecule type (mRNA versus mRNA; DNA versus DNA) is
stronger than that between different molecule types (mRNA
versus DNA), suggesting the molecule type-specific ITH. The two
transcriptome-based ITH scores (DEPTH and tITH) display
prominently stronger negative correlations with antitumor
immune signatures than the DNA-based ITH scores. In addition,
in multiple cancer types, DEPTH and tITH scores have a positive

correlation with MSI, as compared to the negative correlation of
MATH and ABSOLUTE scores with MSI, suggesting the mole-
cule type-dependent correlation between ITH and MSI. However,
with the other genomic instable features (TMB, TP53 mutations,
and HRD), both mRNA- and DNA-based ITH scores are likely to
be positively correlated. Furthermore, in multiple cancer types,
DEPTH and tITH scores have a positive correlation with tumor
purity, as compared to the negative correlation of PhyloWGS
ABSOLUTE, and MATH scores with tumor purity, again
demonstrating the distinction between the mRNA- and DNA-
based ITH.

Compared to the DNA-based ITH scores, DEPTH scores show
a much stronger correlation with the mRNA-based measures,
including immune signatures, cell proliferation, and stemness.
Moreover, DEPTH scores have a stronger correlation with tumor
progression and prognosis phenotypes (tumor size, stage, grade,
survival, and drug response) than the DNA-based ITH scores.

Fig. 8 Association of DEPTH scores with tumor purity. a The positive correlation between DEPTH scores and tumor purity in 15 cancer types (FDRsp <
0.05). b, c Logistic regression analysis showing that DEPTH scores have a significant negative and a significant positive correlation with antitumor immune
signatures (b) and TMB (c) in most cases after correcting tumor purity. d Cox proportional hazards regression analysis showing that DEPTH scores have a
significant inverse correlation with survival prognosis in pan-cancer and in multiple individual cancer types after correcting tumor purity. The hazard ratio
for the high DEPTH score (upper third) was calculated relative to the hazard for the individuals in the low-DEPTH score (bottom third), and its 95% CI is
shown as whiskers. e Comparison of DEPTH scores between tumors and normal tissue.
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Furthermore, DEPTH scores even display a stronger correlation
with specific DNA-based measures, such as TMB, than most of
the DNA-based ITH scores (Supplementary Note 1). DEPTH
scores can capture genetic alterations in cancer to a higher degree
than tITH in that DEPTH scores show a stronger correlation with
the genetic measures (TMB, TP53 mutations, and HRD).

Within the individual cancer types, the different ITH measures
exhibited certain commonality and distinction. For example,
among the 25 cancer types, DEPTH scores were relatively high in
SKCM and TGCT and low in PRAD and THCA (Supplementary
Fig. 5). A similar trend was observed in the ITH scores from
tITH, ABSOLUTE, and EXPANDS (Supplementary Fig. 6). In
phyloWGS, although the ITH scores were also low in PRAD and
THCA, they were intermediate in SKCM and TGCT. In sITH, the
ITH scores were low in PRAD and THCA, but even lower in
SKCM. Surprisingly, for the somatic mutation profiles-based ITH
evaluation method MATH, the ITH scores were close between
SKCM, TGCT, PRAD, and THCA, although SKCM has higher
TMB than PRAD and THCA60. In BRCA, LUAD, and KIRC, the
mRNA-based rather than DNA-based ITH scores showed a
prognostic power. In contrast, in ACC, PAAD, ESCA, and HNSC,
the DNA-based instead of mRNA-based ITH scores exhibited a
prognostic power. In COAD and UCEC, both mRNA- and DNA-
based ITH scores were prognostic. In addition, in HNSC, LIHC,
LUAD, LUSC, and THCA, the mRNA-based ITH scores were
more likely to be associated with tumor progression phenotypes
(tumor size, stage, and grade) than the DNA-based ITH scores,
while in UCEC and BLCA, the DNA-based ITH scores were more
associated with them. In KIRC, both mRNA- and DNA-based
ITH scores associated with tumor progression phenotypes. These
data may suggest complementarity between the DNA- and
mRNA-based methods for evaluating ITH.

One prominent advantage of DEPTH over the other ITH
evaluation algorithms is that DEPTH also applies to the situation
of gene expression profiles in normal samples being unavailable.
In this case, we calculate the DEPTH score of a tumor sample
based on the variation of gene expression values in the tumor
sample from mean gene expression values of all tumor samples.
Using this alternative method, we recalculated DEPTH scores in
the 25 TCGA cancer types. We found that the new DEPTH scores

exhibited similar characteristics with the previous DEPTH scores,
such as their significant association with genome instability,
negative association with clinical outcomes (survival prognosis,
tumor progression, cell proliferation, and stemness), negative
association with antitumor immune signature scores, and positive
association with tumor purity (Supplementary Data 7). These
results suggest that the new DEPTH scores are a viable alternative
for measuring ITH when gene expression profiles in normal
samples are not available.

In conclusion, the DEPTH algorithm is superior to or com-
parable with the other algorithms in evaluating ITH and may
provide new insights into tumor biology and potential clinical
implications for cancer prognosis and treatment.

Methods
Datasets. We downloaded cancer genomics datasets for 25 TCGA cancer types from
the genomic data commons data portal (https://portal.gdc.cancer.gov/). For each
cancer type, we obtained its gene expression profiles (RNA-Seq V2, level 3 and RSEM
normalized), somatic mutation profiles (level 3), protein expression profiles (level 3),
and clinical data. Because seven (ACC, CESC, LAML, OV, PAAD, SKCM, and
TGCT) TCGA RNA-Seq datasets contained no normal control samples, we used the
combined TCGA and GTEx gene expression (RSEM normalized) data from the
UCSC Xena project (https://xenabrowser.net/datapages/). Before analysis, all RSEM
normalized gene expression values were added 1 and then log2-transformed. We
downloaded validation datasets from four resources: GEO (https://www.ncbi.nlm.nih.
gov/geo/), ArrayExpress (https://www.ebi.ac.uk/arrayexpress/), TARGET (https://ocg.
cancer.gov/programs/target), and UCSC (https://xenabrowser.net/datapages/). The
cancer cell line datasets for gene expression profiles (Affymetrix Human Genome
U219 array) and drug sensitivities (IC50 values) were downloaded from the Genomics
of Drug Sensitivity in Cancer (GDSC) project (https://www.cancerrxgene.org/
downloads). We also downloaded several datasets that contained gene expression
profiling and clinical drug response data in cancer from TARGET and GEO. A
summary of these datasets is presented in Supplementary Data 8. The marker gene
sets representing different immune signatures were from several publications,
including B cells61, CD8+ T cells61, CD4 + regulatory T cells61, HLA50, IFN61, and
TILs62. Seven proliferation signature marker genes were obtained from the publica-
tion48, and 109 “stemness” gene signatures were from the publication11. These gene
sets are listed in Supplementary Data 9.

Algorithm. Given a normalized gene expression profiling dataset containing m
genes and s samples (t tumor samples and n normal controls), the heterogeneity
level (DEPTH score) of tumor sample TS is defined as
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where ex(Gi, TS) denotes gene Gi expression level in TS and ex(Gi, NSj) Gi

expression level in normal sample NSj. If normal controls are not available in the
gene expression profiling dataset, the DEPTH score of tumor sample TS is defined
as
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where ex(Gi, CSj) denotes Gi expression level in tumor sample CSj.
DEPTH calculated ITH scores based on the standard deviations of the gene

expression values variations in tumors from mean gene expression values in normal
or tumor samples for more than 1000 genes. The DEPTH algorithm (R function) is
available at https://github.com/WangX-Lab/DEPTH/ under a GNU GPL open-source
license.

Definition of the DEPTH score diversity. To determine the DEPTH score
diversity (intertumor heterogeneity) of an individual cancer type, we used the

Fig. 9 Relationship between different ITH scores. The pairwise
correlations between ITH scores inferred by seven different methods
(DEPTH, tITH24, sITH26, PhyloWGS6, EXPANDS4, 5, ABSOLUTE2, and
MATH3) in pan-cancer are shown.
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Shannon diversity index:

SDI ¼ �
X

n

i¼1

pi log2pi;

where n is the number of intervals dividing the DEPTH scores of all tumor samples
in the cancer type, and pi is the proportion of tumor samples whose DEPTH scores
lie in the ith interval. Here we set n as 22 and the ith interval as [i, i+ 1).

ITH scores by other methods. MATH scores were calculated using the function
“math.score”3 in R package “maftools” with the input of “maf” files, which were
obtained from the genomic data commons data portal (https://portal.gdc.cancer.
gov/). Ploidy scores and tumor purity were calculated using ABSOLUTE2 with the
input of “SNP6” files, which were obtained from the genomic data commons data
portal (https://portal.gdc.cancer.gov/). From the associated publications5,26,58, we
obtained the ITH scores or clone numbers inferred by EXPANDS, PhyloWGS, and
sITH in 11, 24, and 19 TCGA cancer types, respectively. For the ITH scores defined
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by the tITH method24, we recalculated them in the 25 TCGA cancer types based on
the PPI network constructed with STRING v1164. The PPI network is composed of
3,284,073 edges and 15,560 genes.

Measures of genomic instability. We defined the TMB in a tumor sample as the
total count of somatic mutations in the tumor sample. We obtained the gene mutation
profiles in nine DDR pathways and HRD scores in TCGA pan-cancer from the pub-
lication35. We obtained the MSI data for five cancer types (COAD, ESCA, READ,
STAD, and UCEC) with a high prevalence of MSI from the TCGA clinical data.

Logistic regression analysis. We used logistic regression with two predictors
(DEPTH score and tumor purity) to predict immune signature scores and TMB
(high (upper third) versus low (bottom third)), respectively. We performed the
logistic regression analyses using the R function “glm” to fit the binary model and
calculated the standardized regression coefficients (β values) using the function
“lm.beta” in R package “QuantPsyc.”

Survival analysis. We compared survival prognosis between the tumors with high
(upper third) and low (bottom third) ITH scores. Kaplan−Meier survival curves
were utilized to exhibit survival time differences. We used the log-rank test to
evaluate the significance of survival time differences. We performed the survival
analyses using the function “survfit” in the R package “survival.” Also, we used the
Cox proportional hazards model with two variables (DEPTH score and tumor
purity, or DEPTH score and TILs score) to investigate the association between
DEPTH score and the survival time after adjusting for the effect of tumor purity or
immune signatures. Like the univariate survival analysis, we set “DEPTH score” as
a binary variable with “2” (high DEPTH score (upper third)) and “1” (low (bottom
third)) values. Both “tumor purity” and “TILs score” were set as continuous
variables. We performed the multivariate survival analyses using the function
“coxph” in R package “survival.”

Gene-set enrichment analysis. We used GSEA34 to identify the KEGG65 path-
ways highly enriched in high-DEPTH-score (DEPTH scores in the upper third)
and low-DEPTH-score (DEPTH scores in the bottom third) tumors in each cancer
type using the threshold of the adjusted p-value (FDR) < 0.05. We defined the
upper and bottom thirds in each cancer type individually, considering that different
cancer types had a different distribution of gene expression values.

Correlations of DEPTH scores with drug sensitivity. We assessed the correla-
tions of DEPTH scores with drug sensitivity (IC50 values) to each of the 265
compounds in 991 cancer cell lines using the Spearman’s correlation test. The
DEPTH scores of cancer cell lines were calculated based on their gene expression
profiles without normal control samples. The significant correlations were identi-
fied using a threshold of FDR < 0.05.

In silico simulation of tumor samples. We performed the in silico simulation
using three datasets: the 1019 human cancer cell lines from the GDSC project, and
two lung cancer scRNA-seq datasets (GSE6940528 and GSE11366029,30). Based on
each of the three datasets, we generated a set of in silico tumor samples by randomly
selecting 5 × n (n= 1, 2, 3, …, k) cells from all cell lines or single cells to generate k
simulated tumor samples, where k is the total number of cell lines or single cells
divided by 5 (rounded). Also, based on the GDSC cell line dataset, we generated m
in silico tumor samples with each tumor sample composed ofm cell lines. The ith in
silico tumor sample was composed of m cell lines originated from i different cancer
types (i= 1, 2, 3, …, m). Using the same method, based on a glioblastoma scRNA-
seq dataset (GSE57872131), we generatedm in silico tumor samples with each tumor
sample composed of m single cells. The ith in silico tumor sample was composed of
m single cells originated from i different cell lines (i= 1, 2, 3, …, m).

Statistics and reproducibility. Unless otherwise specified, we performed two-class
comparisons using the one-sided Mann–Whitney U test. The false discovery rate (FDR)
was estimated by the Benjamini and Hochberg method66 to adjust for p-values in
multiple tests. We evaluated the correlations of ITH scores with TMB, immune sig-
natures, proliferation signature, tumor purity, tumor stemness, tumor proliferation
marker gene (MKI67, TOP2A, and RACGAP1) expression, and PD-L1 expression in
pan-cancer and in individual cancer types using the Spearman’s correlation test. The
correlation test p-value and correlation coefficient (ρ) were reported. We compared
protein expression levels between high-DEPTH-score (DEPTH scores in the upper
third) and low-DEPTH-score (DEPTH scores in the bottom third) tumors using Stu-
dent’s t test. The statistically significant correlations were identified using a threshold of
FDR < 0.05. The enrichment level of an immune signature in a tumor sample was the
mean expression level of the marker genes of the immune signature in the tumor
sample. The tumor proliferation signature and stemness scores were calculated by the
single-sample gene-set enrichment analysis (ssGSEA)67 of their marker gene sets. We
defined the ratios of immune-stimulatory signature (CD8+ T cells) to immune-
inhibitory signature (CD4+ regulatory T cells) as the mean expression levels of CD8+
T cell marker genes divided by the mean expression levels of CD4+ regulatory T cell
marker genes (log2-transformed). We performed all the computational and statistical
analyses using R (version 4.0.2) and Python (version 3.8).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files. The DEPTH scores of 25 TCGA
patients are available at Zenodo (https://doi.org/10.5281/zenodo.3968534)63.

Code availability
The DEPTH algorithm (R packages) and other computer code and scripts are available at
Github (https://github.com/WangX-Lab/DEPTH.git).
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