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Ligand-bound glutamine binding protein assumes
multiple metastable binding sites with different
binding affinities
Lu Zhang 1,5✉, Shaowen Wu2,5, Yitao Feng2,5, Dan Wang2, Xilin Jia1,3, Zhijun Liu4, Jianwei Liu2 &

Wenning Wang 2✉

Protein dynamics plays key roles in ligand binding. However, the microscopic description of

conformational dynamics-coupled ligand binding remains a challenge. In this study, we

integrate molecular dynamics simulations, Markov state model (MSM) analysis and

experimental methods to characterize the conformational dynamics of ligand-bound gluta-

mine binding protein (GlnBP). We show that ligand-bound GlnBP has high conformational

flexibility and additional metastable binding sites, presenting a more complex energy land-

scape than the scenario in the absence of ligand. The diverse conformations of GlnBP

demonstrate different binding affinities and entail complex transition kinetics, implicating a

concerted ligand binding mechanism. Single molecule fluorescence resonance energy transfer

measurements and mutagenesis experiments are performed to validate our MSM-derived

structure ensemble as well as the binding mechanism. Collectively, our study provides deeper

insights into the protein dynamics-coupled ligand binding, revealing an intricate regulatory

network underlying the apparent binding affinity.
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E lucidation of protein dynamics and understanding how it is
coupled with molecular recognition offer great insight into
molecular control of cellular function1–7. Although the

modulation role of protein dynamics in ligand binding has seen
much attention, a full microscopic description of the coupling
between conformational dynamics and ligand binding is still
challenging. Fundamentally, protein structural plasticity entails
plenty of metastable states of protein in both ligand unbound and
ligand-bound forms, which may not be easily accessible by
experimental techniques. The diversity of structural features, ener-
getics and kinetics of these states could result in binding thermo-
dynamics and kinetics far more complicated than the simple
models such as induced-fit and conformational selection8–16.
Therefore, dissecting the detailed conformational dynamics and
energetics underlying ligand recognition of proteins is critical for
understanding the modulation of affinity and related drug design.

Periplasmic binding proteins (PBPs) provide a typical model
system to investigate the impact of protein dynamics on the
ligand binding17. They are a superfamily of proteins responsible
for binding and delivering substrates across the cell membrane
by collaborating with the cognate ATP-binding cassette
transporters17,18. X-ray crystallographic studies, nuclear magnetic
resonance (NMR), single molecule fluorescence resonance energy
transfer (smFRET) and phosphorescence spectroscopy have been
applied to investigate the conformational dynamics of PBPs13,19–31.
Glutamine binding protein (GlnBP) is a PBP that assists L-
glutamine uptake in Escherichia coli and it has a similar three-
dimensional structural scaffold to other PBPs18–20,32–37. Crystal
structures19,20 and NMR paramagnetic relaxation enhancement
studies25,28,30 have suggested that ligand-bound GlnBP only
adopts closed conformation while ligand-free GlnBP is solely in
the open conformation, supporting the conventional Venus Fly-
trap model. However, phosphorescence spectroscopy, NMR
residual dipolar couplings, and smFRET experiments suggested
inter-domain dynamics in ligand-free GlnBP24,30,31, raising the
possibility that conformational selection could play a role in its
molecular recognition. Complementary to experimental techni-
ques, molecular dynamics (MD) simulations and Markov state
models (MSMs) method have become popular tools to decipher
the dynamic structural ensemble of proteins at both atomic
resolution and biologically relevant timescales38–53. They have
been adopted to discover metastable state and provide the kinetic
information for molecular recognition for PBPs31,54–58 and elu-
cidated multiple metastable states for ligand-free GlnBP31.
Moreover, computational coarse-grained model proposed GlnBP
could undergo large-scale closed-to-open transition59. These
studies demonstrate the conformational complexity of GlnBP and
pave the way for elucidating its ligand binding mechanism.
However, there are still critical questions remain largely unsolved
and exploring the conformational dynamics of ligand-bound-
GlnBP is prerequisite for fully understanding its molecular
recognition mechanism.

In this work, we have combined MSM based on extensive MD
simulations, smFRET, and site-directed mutagenesis to obtain a
comprehensive insight into the conformational dynamics of
ligand-bound GlnBP and elucidate its role in molecular recog-
nition. Both our experimental data and computational models
suggest that ligand-bound GlnBP has complex conformational
dynamics in solution. Besides the inter-domain motion impli-
cated by the crystal structures, we have also observed ligand
migration between two domains and found a binding pocket in
the small domain. The inter-state transitions estimated by the
kinetic network model, as well as the different binding affinities of
multiple conformational states together suggest an intricate
interplay between the conformational dynamics and ligand
binding, which were further validated by site-directed

mutagenesis and smFRET experiments. Taken together, our work
offers not only a deeper insight into the complex conformational
diversity of ligand-bound GlnBP, but also provides direct evi-
dence that protein dynamics is essential for ligand binding.

Results
Ligand-bound GlnBP shows multiple ligand binding sites.
Crystal structures have demonstrated that GlnBP is composed of
two globular domains, the large domain (protein residues 5–84
and 186–224) and the small domain (protein residues 90–180),
connected by a hinge region (protein residues 85–89 and 181 and
185), and the substrate glutamine binds at the domain surface
(Fig. 1)19,20. However, our MD simulations of ligand-bound
GlnBP have sampled a broad conformational space beyond the
crystal structures. The simulation was initiated from the crystal
structure20 of ligand-bound GlnBP (closed conformation), fol-
lowed by several rounds of simulations (~60 µs) to reach a con-
verged conformational space (Supplementary Fig. 1a, see
“Methods” for details). To gain insight into the underlying
thermodynamics and kinetics, we constructed the MSM38–46

based on the MD trajectories using a recently developed algo-
rithm time-structure-based independent component analysis
(tICA)44,45 (see “Methods” for details). In particular, the MD
conformational space was decomposed into ~700 microstates
according to the kinetic similarity. To examine the underlying
molecular mechanism, the microstates were further grouped into
eight macrostates, which represent local minimums in the free
energy landscape and their inter-state transitions are separated by
energy barriers. Besides the two states similar to the crystal
structures19,20, another six macrostates were elucidated, which are
well separated by not only the open-closed transitions, but also
the ligand displacement between two domains (Fig. 2). The extent
of opening was measured by the Cα–Cα distance between Thr59
(large domain) and Thr130 (small domain) (Fig. 2b). These two
residues were chosen as they were used to attach fluorophore
labels in the smFRET measurements (see below for details). Four
of the eight states (S1, S6, S1′, and S4′) exhibit short average
distances between 35 and 36 Å, and could be assigned as closed
conformations. The S2 and S5 states could be assigned to open
conformations due to the long average distance (43.1 Å for S2 and
46.1 Å for S5). The inter-residue distances of states S3 and S4 are
moderate and thus were assigned as the “semi-closed” states.
Examination of the representative structures of the eight mac-
rostates revealed that the ligand could bind at different sites on
GlnBP. In state S4, S5, and S6, the binding site is at the large
domain. In states S1, S2, and S3, the ligand binds at the small
domain (Fig. 2a), while the ligand binds at the interface between
the large and small domain in states S1′ and S4′. This assignment

Fig. 1 Crystal structure of the ligand-bound closed and ligand-free open
GlnBP. The small domain, the large domain and the hinge is shown in
yellow, pink and grey, respectively. In the ligand-bound closed
conformation, the ligand is shown in spheres.
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of binding site was further confirmed by the relative distance
between the ligand and two domains (Fig. 2c). Interestingly, we
notice that although the tICs generated by tICA44,45 are usually a
mixture of various conformational changes, the ligand migration
and protein opening-closing motion were well captured by the
first and the fourth tICs (Fig. 2a), suggesting that these con-
formational changes indeed make obvious contributions to the
ligand-bound GlnBP dynamics.

Ligand-binding affinity correlates with protein dynamics. The
ligand binding affinities for different macrostates were estimated
by Poisson–Boltzmann surface area (MM-PBSA) method60,61

(see “Methods” for details). This method has been widely applied
in areas of biomolecular studies and computational drug design
to estimate the relative binding free energies62,63. We note the
binding free energy of individual macrostate could not be mea-
sured by experimental method, but it can shed light on the
relative binding strength between protein and ligand in each state.
Accordingly, we found the ligand at large domain has higher
binding affinity than it is at small domain (Fig. 3a). This matches
with the observation that large-domain binding states S4, S5, and
S6 have higher populations than the small-domain binding states
S1, S2, and S3 (Fig. 2a). The calculated ligand binding affinities
are also in line with the analysis of the ligand-protein interactions
(Fig. 3). Ligand in S5 and S6 states show similar interactions with
the large domain: the ligand’s alpha group forms stable interac-
tions with the large-domain residues Gly68, Thr70, and Arg75
(averaged distance ~3.0 Å); the ligand’s side chain form a bit
stronger interactions with Asp10 and Ala67 in S6 state than in
S5 state (Fig. 3b). However, S6 has remarkably higher binding
affinity than S5 (Fig. 3a), due to the binding site of S6 state is on
the large-domain surface and additional interactions of the ligand
with the small-domain residues Asp157 and Gly119 can be
formed when protein adopts closed conformation (Fig. 3c). On a
sharp contrary, S1 and S2 demonstrate different protein con-
formations (Fig. 2b), but they have similar ligand binding affinity
(Fig. 3a). This can be explained by the observation that their
binding pockets in the small domain are relatively buried (Sup-
plementary Fig. 2) and ligand only interacts with protein residues
in the small domain in these two states. Specifically, ligand in S1
and S2 states shows similar interactions with small-domain

residues Ala113, Lys115, Gly119, Leu155, and Ser120 (Fig. 3c),
while does not interact with the large-domain residues (Fig. 3b).
Thus, the opening-closing motion would not perturb the ligand-
protein interactions in S1 and S2 states. These observations
altogether explain why S1 and S2 have similar ligand binding
affinity (Fig. 3a), even though they demonstrate different protein
conformations (Fig. 2b).

Furthermore, we found different binding sites can give rise to
diverse binding affinities. As shown in Fig. 2b, S2 and S5 states
show dFRET of 43.1 ± 3.9 Å and 46.1 ± 3.2 Å, respectively,
suggesting that their opening extent are similar. However, the
binding affinities of S2 and S5 are notably different, with the
binding affinity of S5 state obviously higher than that of S2 state
(Fig. 3a). How these states are kinetically connected is a question
worthy of exploring and this investigation would assist the
understanding of the interplay between the protein dynamics and
ligand binding.

Protein dynamics modulates the kinetic transition network.
The kinetic transition network was elucidated by MSM (Fig. 4a),
according to which the macrostates were roughly grouped into
two clusters: one involves S1, S2, and S3 with ligand at the small
domain, and the other involves S4, S5, and S6 with ligand at the
large domain. The two clusters are connected by S3 and S4. S1′
and S4′ are two off-pathway states that only connect to S1 and S4,
respectively. We found that the opening-closing transitions
within cluster (S1↔S2 or S5↔S6) occur very fast (<10 μs), and
there is no intermediate state during the transitions. Therefore,
GlnBP could undergo quick opening-closing movement with the
ligand bound at either the large or small domain. On the other
hand, transitions through the semi-closed states S3 and S4 are
slower, especially the S3→S1 and S3→S2 transitions. This sug-
gests that besides the opening-closing motions, other conforma-
tional changes also determine the kinetics.

First, we found that the kinetics is partially determined by the
structural rearrangements involving helix V (residues 138–146),
helix VI (residues 160–168) and strand J (residues 111–115) in
the small domain (Fig. 4b). The extent could be measured by the
value of Δd= d1−d2 (d1 for the space between helix VI and helix
V; d2 for that between helix V and strand J). As shown in Fig. 4b,
in the semi-closed S3 and S4 states, the values of Δd are moderate.

Fig. 2 MSM analysis elucidates eight macrostates, demonstrating not only the open-closed transitions, but also the ligand displacement between two
domains. a Projection of macrostates onto two tICs. Representative conformations of the six states on the major transition pathway are shown with the
ligand-binding region highlighted in black circle. MSM-derived populations of macrostates are labeled. The crosses label the projection of the crystal
structures (Fig. 1). b The open-closed transition of protein was measured as distance between Cα atoms of Thr59 and Thr130. c The ligand migration was
estimated by its relative distance to the large/small domain. The averaged pairwise distances between the heavy atoms of the ligand and the Cα atoms in
each domain were calculated. Δd equals to the d(ligand-small domain)—d(ligand-large domain). In b, c, the box plot for each macrostate was calculated
based on all the MD conformations belonging to the specific state.
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However, in S5, S6, and S4′ states, Δd values are small, implying
the binding pocket of the small domain is almost locked. On the
contrary, S1, S2, and S1′ states have obviously larger Δd values,
thereby that pocket is wide enough to fully accommodate the
ligand. This structural rearrangement plays an important role in
not only modulating the kinetics but also to make enough space
for ligand to diffuse into the binding site on the small domain.

Further structural analysis reveals the flexibility of the hinge
region also tunes the kinetics. The rigidity of the hinge region is
mainly contributed by four pairs of hydrogen bonds (Fig. 4c). As
ligand migrates from large domain to small domain, the hinge
becomes more flexible, mainly manifested by the decreasing
bonding strength between the backbone of Y185 and that of Y85/
Y86. We also notice although the off-pathway state S1′ has similar
hydrogen bond number with S1 state, their hydrogen bonding
patterns are different, involving weakening the hydrogen bond

(S88_O-Q183_N) and simultaneously strengthening the hydro-
gen bond stability between Y86_O and Y185_N. This also
rationalizes the slow off-pathway transition between S1 and S1′
states. The other off-pathway transition S4→S4′ is also relatively
slow and this is due to the variation of Δd (Fig. 4b) as well as the
expansion of a loop between strand J and helix IV to allocate the
ligand (Supplementary Fig. 3).

Overall, by combining the kinetics derived from MSM analysis
as well as detailed structural analysis, we have pinpointed the key
structural features that determine the transition kinetics, provid-
ing the basis to understand the molecular recognition and
manipulate the binding affinity of ligand-bound GlnBP.

A concerted model for molecular recognition. To understand
the ligand binding mechanism, a comparison between ligand-free
and ligand-bound GlnBP was made. The conformational space of
ligand-bound GlnBP explored herein shows that ligand binding
expands the conformational space with respect to that of ligand-
free GlnBP31 (Supplementary Fig. 4). First, we performed prin-
cipal component analysis based on all Cα atoms using all the MD
conformations of ligand-bound GlnBP and the same eigenvectors
were adopted for projecting the ligand-free GlnBP conforma-
tions31. The projection of each macrostate sampled in ligand-
bound GlnBP was compared to the overall projection of ligand-
free GlnBP. Projection of S5 and S6 onto the top two components
of principal component analysis shows considerable overlap with
that of ligand-free GlnBP; while other states are partially (S2, S3,
and S4) or not sampled (S1, S1′, and S4′) by ligand-free GlnBP
(Supplementary Fig. 4a). Second, as the ligand binding induces
the conformational rearrangement in the small domain (Fig. 4b),
we also projected macrostates of ligand-bound GlnBP as well as
ligand-free MD conformations onto the dimension of Δd. The
comparison shows that states S3, S4, S5, and S6 remarkably
overlap with ligand-free GlnBP, while the other states (S1, S1′, S2,
and S4′) populate distinct regions (Supplementary Fig. 4b). Taken
these results together, we may conclude that four macrostates (S3,
S4, S5, and S6) of ligand-bound GlnBP have their counterparts in
ligand-free GlnBP. The other four macrostates (S1, S1′, S2, and
S4′) identified in ligand-bound GlnBP, which involve structural
rearrangements of the small domain and/or remarkable inter-
domain twist, are absent or very rarely populated in ligand-
free GlnBP.

Based on the structural features, the kinetic network and the
comparison between ligand-bound and ligand-free GlnBP
discussed above, we proposed a concerted mechanism of ligand
binding (Fig. 5). Although the S6 state has the highest binding
affinity and its conformation exists in the ligand-free GlnBP, it is
inaccessible for initial ligand binding, since the two domains are
locked up and has limited space to allow ligand to diffuse in. This
is also reflected by the smallest solvent accessible surface area
(SASA) of S6 (Supplementary Fig. 2). On the contrary, the open
state S5 together with the two semi-closed states S3 and S4 are
sampled by ligand-free GlnBP and have remarkably larger SASAs
(Supplementary Fig. 2), serving as the potential conformations for
initial ligand binding. The subsequent transitions have several
possibilities following the kinetic network (Fig. 4a). In this
scenario, “conformational selection” works for the initial selective
binding to S5, S4 or S3, and “induced fit” corresponds to
subsequent transitions to the closed state S6 or states that barely
exist in the absence of ligand (Fig. 5). In this regard, our studies
provide another case that two mechanisms are not mutually
exclusive but can be collaborative for ligand binding57,64,65.

Experimental examination of the conformational dynamics.
One major finding in this study is ligand-bound GlnBP has

Fig. 3 Ligand-binding affinity is correlated with the ligand-protein
interactions. a Ligand-binding free energies of macrostates are estimated
by MM-PBSA method. We performed 1000 interactions of calculations to
achieve the statistics about the reported data. In each interaction, one
random conformation was selected from each microstate and the binding
free energy of each macrostate was estimated by the population weighted
sum of the binding free energies of all the microstates belonging to the
specific macrostate. Box plot represent the data distribution resulted from
the 1000 times of calculations. b Interactions between ligand and the
protein residues in the large domain. c Interactions between ligand and the
small-domain residues. In b–c, the atoms used for distance calculations are
labeled next to the x-axis and the minimum distance is reported when there
are chemically equivalent atoms. The means and standard deviations of
distances for each macrostate were calculated using all the MD
conformations belonging to the specific state.
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multiple conformational states other than the fully closed con-
formation captured by the crystal structure. To examine if there
exist multiple conformational states for ligand-bound GlnBP in
solution, we performed smFRET experiments to measure its
protein conformational dynamics (see “Methods” for details).
Thr59 and Thr130 (the same residues used above for measur-
ing the inter-domain distance in Fig. 2b) were mutated to

cysteines and labeled with fluorophores (Alexa fluor 555-
maleimide or Alexa fluor 647-maleimide) (Fig. 6a). We found
FRET efficiency displays a broad distribution (Fig. 6b, c), sug-
gesting the ligand-bound GlnBP can adopt other conformations
other than the closed one as suggested by the crystal structure.
Four states could be identified from transition density plot by
hidden Markov model (HMM) state analysis (Supplementary
Figs. 5–6, see “Methods” for more details). They are named as E1,
E2, E3, and E4, with the efficiency values centered at 0.15, 0.31,
0.51, 0.68, respectively.

We note a quantitative comparison between the MD simula-
tion and smFRET measurement is not feasible due to both
computational limitations (e.g., not including the fluorophores in
the simulation system) and many aspects that affect the
experimental FRET efficiencies66,67. Moreover, the four states
(E1 to E4) along the inter-residue distance or FRET efficiency do
not correspond to the macrostates of MSM, since this single
degree of freedom could not discriminate all the eight macro-
states. In this regard, we only made a rough comparison using
overall distribution of the inter-Cα distances between the dye-
labeled residues. The calculated distance distribution can be well
fitted with four Gaussian functions (Supplementary Fig. 7),

Fig. 4 Modulation of the kinetic transition network by essential protein conformational changes. a Transition pathways elucidated by MSM, with mean
first passage times alongside the arrows. b Structural rearrangement in the small domain manifested in Δd. d1 denotes the distance between helix VI
(residues 160–168) and helix V (residues 138–146), while d2 for the helix V-strand J (residues 111–115) distance. Box plot for each macrostate represents
the distribution of Δd. All the MD conformations belonging to the specific state were included in the statistics. c The rigidity of the hinge (residues 85–89
and 181 to 185) is represented by four pairs of hydrogen bonds. Each pair is shown with an individual color in the stacked bar. Bootstrapping algorithm with
replacement was applied to estimate the statistical errors of the number of hydrogen bonds, in which 100 samples were generated and each sample
contains 100 random conformations from the macrostate under investigation.

Fig. 5 Ligand-binding mechanism for GlnBP. “Conformational selection”
(CS) works for the initial selective binding to S5, S4 or S3 state, followed by
“induced fit” (IF) for subsequent transitions to the states that barely exist in
the absence of ligand.
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centered at 4.7 Å (21%), 3.9 Å (46%), 3.6 Å (22%), and 3.4 Å
(11%), the populations of which are in general agreement with the
populations of the four ligand-bound states (24%, 23%, 33% and
20% for E1, E2, E3 and E4, respectively (Fig. 6d)) in smFRET
measurements.

Furthermore, comparison of FRET efficiency distribution
between ligand-bound and ligand-free GlnBP shows a clear
population shift upon ligand binding (Fig. 6c). The state
population of E4 is obviously raised while simultaneously those
of E1 and E2 are reduced (Fig. 6d and Supplementary Fig. 6). One
possible explanation for this population shift is that the closed
S6 state shows higher ligand binding affinity as well as stronger
protein–ligand interactions than the open S5 state (Fig. 3a, b),
therefore promoting the corresponding population shift to the
more closed conformation. An alternative interpretation is that
the ligand binding has induced the appearance of four states (S1,
S1′, S2, and S4′) that are not existing or rarely sampled in the
absence of ligand as discussed above. Three of them adopt closed
conformations, with the total populations (~24%) almost six
times than that of the open one (~4%) (Fig. 2a, b). The abundance
of additional closed conformations induced by ligand-binding
also contributes to the population shift.

Overall, consistent with our computational model, smFRET
measurements also indicate that ligand-bound GlnBP has high
conformational heterogeneity in solution and ligand binding has

induced the protein population shift to the more closed
conformations.

Another major finding in this study is that ligand can bind in a
buried pocket in the small domain. The most straightforward way
to validate the small domain-binding site is to make mutations on
the residues directly interacting with the ligand in these states.
However, we notice these interactions are mainly through the
backbone of the protein, instead of the side chain (Fig. 3c).
Therefore, mutations would hardly make obvious perturbation to
the binding affinity. Further structural investigations reveal that
Thr118 may come into play to affect the protein’s conformational
dynamics as well as the ligand binding affinity. In the S1 state, the
hydroxyl group in the Thr118’s side chain forms stable hydrogen
bonds (averaged distance ~3.1 Å) with the Asp10 in the opposite
domain to assist locking the protein in the closed conformation
(Fig. 6e). In the off-pathway state S1′, Thr118’s side chain directly
interacts with the ligand’s alpha group, helping to stabilize ligand
inside protein (Fig. 6f). MM-PBSA calculations estimate that
Thr118 contributes ~10% to the binding free energy of S1′ state
(see “Methods” for details). Based on these observations, we
anticipate that Thr118 may affect conformational dynamics as
well as ligand binding affinity.

Accordingly, we performed site-directed mutagenesis on
Thr118 and measured the dissociation constants for the mutants
(Fig. 6g, see “Methods” for details). Specifically, we designed

Fig. 6 Experimental investigation of protein dynamics by smFRET and mutagenesis. a GlnBP structure with the orange spheres denoting the positions
where fluorophores labels are attached. b smFRET time traces for the ligand-bound wildtype GlnBP. c smFRET distribution for ligand-bound (orange) and
ligand-free (blue) GlnBP. d Populations of the four states identified in smFRET for both ligand-free and ligand-bound states. e In S1 state, Thr118’s side chain
is interacting with Asp10 on the opposite domain. f In S1′ state, Thr118’s side chain forms direct interaction with the ligand. g Ligand-binding affinity for
wildtype, T118S and T118A. The chemical structures of wildtype and mutants are shown in the inset.
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T118S mutation to maintain the hydroxyl group in its side chain,
and T118A mutation to eliminate the hydroxyl group. The results
demonstrate T118S mutation has a similar binding affinity (Kd=
203 nM) to the wildtype (Kd= 202 nM). On the contrary, T118A
mutation greatly decreases (~35 folds) the ligand binding affinity
(Kd= 6.9 µM). These mutants underline the hydroxyl group of
Thr118 is critical for ligand binding. It’s also worthy to note that
Thr118’s potential function in modulating ligand binding affinity
is pinpointed by the two extra conformational states from MSM.
Therefore, the above experimental validation of Thr118’s effect
could also serve as a proof of the multiple conformations
elucidated in this work. Furthermore, it also provides direct
evidence that perturbation of the conformational space can affect
the binding affinity.

Discussion
Elucidation of the conformational dynamics is essential to
understanding its interplay with the biological function, especially
the mechanism of molecular recognition1–7. “Conformational
selection” and “induced fit” are two extreme models to explain
the ligand binding mechanisms8–16. Although two mechanisms
describe different dynamic processes, they both emphasize the
role of protein dynamics in ligand binding. Previous X-ray
crystallographic studies found GlnBP in a closed conformation
upon ligand binding, and in an open conformation without
ligand. The absence of ligand-free closed crystal structure leads to
the assertion that GlnBP follows “induced fit” mechanism upon
ligand binding, as “conformational selection” mechanism
assumes protein can adopt various conformations even without
the existence of ligand. However, phosphorescence spectro-
scopy24 and coarse-grained simulation59 have captured the inter-
domain dynamics for ligand-free GlnBP. Consistently, the closed
conformation was identified as one major conformation for
ligand-free GlnBP using integrated computational and experi-
mental methods31. These raise doubts about the commonly
assumed “induced fit” mechanism for GlnBP.

In this work, we have combined MD simulation, MSM and
experimental methods to examine the role of conformational
dynamics in ligand binding. We have found ligand-bound GlnBP
exhibits more complicated conformational dynamics than that of
ligand-free GlnBP, and ligand can bind sites other than that
observed in crystal structure. According to the microscopic
models of conformational selection and induced fit mechanisms,
the case of GlnBP can be viewed as a complex combination of the
two paradigms. We also performed experiments to investigate the
protein dynamics of GlnBP. Consistent with the MD and MSM
results, our smFRET measurement also suggests there exist
multiple conformational states for ligand-bound GlnBP. Fur-
thermore, we identified one residue T118 that plays important
role in modulating the ligand binding affinity based on our
computational model and our prediction was validated by site-
directed mutagenesis and binding affinity measurement. MSM
constructed based on extensive MD simulations of GlnBP with
the specific mutation would help to elucidated the detailed var-
iation of protein dynamics caused by the mutation. It is noted
there exists a large discrepancy between the ensemble-averaged
absolute binding free energy (ΔGbinding) calculated using MM-
PBSA method (−197.1 ± 4.1 kJ/mol) and that obtained from the
ITC measurement (202 nM, corresponding to −63.0 kJ/mol at
T= 291.15 K). One major source of this discrepancy is the con-
formational entropy, which is not considered in the MM-PBSA
calculations60,62. Since the entropy’s contribution in different
metastable states with the same ligand are usually similar62, it is
reasonable to leave out the entropy term in the calculations when
the relative binding affinity rather than the absolute value is

needed. Actually, MM-PBSA is popular in estimating the relative
binding free energies (Δ(ΔGbinding)) in many applications with
reasonable accuracy and efficiency62,63,68, which fits our purpose
to correlate the relative ligand binding affinity of each con-
formational state to the protein dynamics in the current study.
Altogether, these computational and experimental results suggest
the complex conformational dynamics of ligand-bound GlnBP.
More importantly, they provide direct evidence that binding
affinity can be manipulated by regulating protein dynamics.

Complex conformational dynamics and multiple binding sites
have also been found in other protein–ligand recognition systems,
in sharp contrast to the simple Venus Fly-trap model. This fea-
ture might be a common paradigm of molecular recognition
adopted by many proteins that have yet to be discovered. The
obvious functional advantage is that the complex dynamics
entails a complex kinetic network of ligand binding, which allows
more flexible regulation of binding affinity. It is worth noting that
multiple conformational states and their transition kinetics are
very difficult to characterize experimentally. The strategy of
combining experimental and computational methods shows its
strength in elucidating the microscopic mechanism of molecular
recognition.

Methods
MD simulations. Set up of MD simulation model: The ligand-bound crystal
structure (PDBID: 1WDN19) was used as the structural basis for model con-
struction. The terminal residues Lys4, Pro225, and Lys226 were removed to make
the residue number consistent with the open crystal structure (PDBID: 1GGG20).
The system was solvated in a dodecahedron water box with sodium chloride
concentration of 0.3 mol/L. To consider the protein may transit to the open con-
formation, the box size was determined by the open crystal structure, making box
edges at least 10 Å from the protein surface. Protein was solvated with TIP3P water
molecules69 and counter-ions were also added to neutralize the system. AMBER03
force field parameters70 are used for simulating protein and ions. Partial charges of
ligand were derived following RESP scheme71,72 and other parameters were
extracted by referring to those of glutamine in the AMBER03 force field. First,
10,000-steps energy minimization was performed. Next, the system was simulated
for 200 ps with position restrain on all the heavy atoms with a force constant of
10 kJ × mol−1 × Å−2 under NVT ensemble (T= 298 K), followed by another
500 ps position restraint under NPT ensemble (T= 298 K, P= 1 bar). Afterwards,
we removed the restrain and performed a 10 ns NPT simulations, the final con-
figuration of which was used to initiate 20 independent 100 ns production NVT
(T= 298 K) simulations with different initial velocities. In the simulations, we
applied V-rescale thermostat73 with the coupling time constant of 0.1 ps. A cutoff
of 12 Å was used for Lennard-Jones interactions. The long-range electrostatic
interactions beyond the cut-off at 12 Å were treated with the Particle-Mesh Ewald
(PME) method74. The neighbors list was updated every 10 steps. An integration
time step of 2.0 ps was used and the LINCS algorithm75 was applied to constrain all
the bonds. We saved the snapshots every 50 ps. All the simulations were performed
using Gromacs 2016.476,77.

Seeding unbiased MD simulations: Several rounds of simulations were
performed by seeding from different regions of the conformational space.

We collected the MD conformations from the first round of 20 × 100 ns
simulations after removing the first 10 ns data from each trajectory. The
conformations were divided into 20 clusters by k-center clustering algorithm78–80

based on the r.m.s.d. of the 220 Cα atoms after aligning the conformations by the
large domain (Cα atoms of residue IDs 5 to 84 and 186 to 224). One random
conformation was extracted from each cluster and used as the seed for one 100 ns
MD simulation in the second round. In the same way, we collected all the
conformations from the second round of 20 × 100 ns simulations and clustered
them into 20 clusters. One random conformation from each cluster was selected to
initiate one 100ns trajectory as the third round of MD simulations.

To examine if the ligand can reside at the domain surface when protein is open,
we constructed another two models. In the first model, we aligned the closed crystal
structure (PDBID: 1WDN20) to the open crystal structure (PDBID: 1GGG20) by
the large-domain residues. Ligand was then extracted from the aligned closed
conformation and inserted into the ligand-free-open conformation (named as
“LDbind-open”). In the second model, the alignment was made according to the
small-domain residues (Cα atoms of residue IDs 90 to 180) and in this way the
ligand was located at the small-domain surface (named as “SDbind-open”). Similar
system set up as elaborated in the subsection “Set up of MD simulation model” was
used herein and 10 independent 100 ns production NVT (T= 298 K) simulations
were performed for each model. For the “LDbind-open” model, ligand keeps
binding at the large-domain surface in nine simulations. However, for the
“SDbind-open” model, none of the simulations shows ligand bound at the
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small-domain surface and we observed ligand diffused from the small domain to
the large-domain surface in two simulations. Therefore, we speculated the large-
domain surface can serve as a ligand binding site when protein is in the open
conformation. In this regard, we collected the conformations from the simulations
with ligand binding at the protein (nine from the “LDbind-open” model and two
from the “SDbind-open”model) after removing the first 10 ns from each trajectory,
and did a 20-state K-center clustering and used the center conformation for
seeding the second of simulations.

We combined the second and the third round of simulations from the ligand-
bound closed crystal structure, as well as the second round of simulations from the
two manually constructed models to do a K-center clustering and divided the
conformations into 50 clusters. One random conformation was extracted from
each cluster to seed the next round of simulations. In a similar way, we performed
another eight rounds of MD simulations seeded from either the cluster center or
one random conformation of each cluster, excepting the last two rounds in which
two random conformations for each cluster were used for seeding. In total, we
performed 610 × 100 ns MD simulations. In this work, we only focused on the case
that ligand binds at the protein, therefore in each round of MD simulations, we
examined the trajectories and removed those showing ligand dissociation before
doing clustering. Finally, we have 576 MD trajectories for the MSM constructions.

Construction and validations of MSM. The advantage of MSMs is to facilitate the
investigation of long-timescale dynamics based on many short MD simulations by
discretizing both conformational space and time38–46,78,79,81–84. Its basic idea is to
partition the conformational space into metastable states, with each state corre-
sponding to an energy minimum in the free energy landscape and the transition
between them are slow. With a proper lag time Δt, fast motions within states are
integrated out by discretizing time in units of lag time and the model becomes
Markovian. That is, the probability for the system to visit a certain state at time
t+ Δt is solely determined by its current position at t. Under the Markovian
condition, the long-timescale dynamics can be obtained by propagating the tran-
sition probability matrix T τð Þ:

P nΔtð Þ ¼ TðΔtÞnPð0Þ; ð1Þ
where P nΔtð Þis the state population vector at time nΔt, and Tij is the element of
T Δtð Þ, denoting the transition probability from state i to state j after a lag time of
Δt.

We followed a commonly used “splitting and lumping” procedure to construct
the MSM.

Splitting conformations into microstates with validated MSM parameters: We
adopted the tICA method44,45 combined with the K-center algorithm78–80 to divide
the MD conformations. The dimensionality reduction by tICA has been found to
capture the slow and biological relevant conformational changes44,45. Optimal
parameters for MSM construction were selected using a generalized matrix
Rayleigh quotient (GMRQ)43,85 and parameters including atomsets, tIC number,
tICA lag time and cluster number for K-center clustering were examined
(Supplementary Fig. 8). Generally, GMRQ measures the ability of a model to
capture the slowest dynamics and GMRQ scores, which are a summation over the
several highest eigenvalues, serve as a good metric. The higher scores suggest the
model is closer to the variational bound and is preferred. In practice, we performed
50 iterations of shuffle-split cross-validations. In each iteration, we randomly
selected half number of trajectories as the training set for learning MSM and used
the remaining trajectories as test set for scoring.

To consider both the inter-domain conformational change and the ligand
diffusion inside the protein, we used the atomic pairwise distances between two
domains, distances between the ligand and each domain, as well as the distance
between the two FRET dyes inserted positions as the feature for tICA. To select the
domain residues subject for the atom-pair calculations, we considered the residues
within different cut off distances of the ligand. Both the ligand-bound-closed
crystal structure and one representative closed conformation with ligand in the
novel small-domain binding pocket were considered for the domain residue
selection (Supplementary Fig. 8a–b). In the distance calculations, for the domain
residues only Cα atoms were used, while for the ligand all the heavy atoms were
included. In particular, we examined the cut off distances ranging from 5 to 11 Å
and found GMRQ scores highest at 9 Å (Supplementary Fig. 8c). We also
investigated tIC number, tICA lag times and cluster number for K-center
clustering, and the parameters showing the highest GMRQ scores are selected
(Supplementary Fig. 8d–f). Finally, we used 9 Å as the distance cutoff to select atom
sets, 4 tICs, 10 ns as tICA lag time and divided the conformation into 750
microstates. To have better statistics within the microstates, we removed those
microstates having fewer than 15 conformations (~1% of mean number of
conformations per state) and got the 704 microstates for the subsequent model
validation and analysis.

MSM validation: To determine the lag time Δt when the system becomes
Markovian, we examine the implied timescales40,42,86 ðτkÞ, which is calculated as:

τk ¼ �τ= ln μkðτÞ; ð2Þ
where μkðτÞ is the kth eigenvalue of the transition probability matrix at lag time τ.
If the model is Markovian, the implied timescale τk becomes constant regardless of
the choice of τ87.

To take the uncertainties into account, we applied bootstrapping method by using
576 samples. For each sample, we randomly selected 576 trajectories with replacement
from the ensemble of MD trajectories and calculated the implied timescales by
constructing MSMs. Averaged values and errors were estimated from the 576 samples
and reported in Supplementary Fig. 9a. In our model, we found the implied timescale
plot reached plateau at around 30 ns, implying the system becomes Markovian after
this time. Accordingly, we selected 30 ns as the lag time to construct our MSMs.

To further validate our model, we compared the residence probability (the
probability for the system to remain in a certain microstate) as a function of time
obtained from the propagation of the MSM with those from the original MD
trajectories41 (Supplementary Fig. 9b) and they are in good agreement.

Examination of the convergence of conformational samplings and MSMs: In
order to investigate the convergence of the MD conformational space, we
compared the complete MD samplings (N rounds) with those excluding the last
two rounds (N-2 rounds), and those excluding the last round (N-1 rounds)
(Supplementary Fig. 1a). It’s shown that no new metastable regions in the
conformational space appears as the increase of the sampling, suggesting the free
energy landscape has reached reasonable convergence. We also examined the
robustness of our MSMs by constructing models from the three MD datasets. The
results show the implied timescales are consistent with the increment of size of MD
conformational ensemble (Supplementary Fig. 1b), reflecting that our
conformational sampling is sufficient to predict the dynamics of the system.

Lumping and calculations of the quantities for metastable states: For
visualization and revealing the molecular mechanisms, we further lumped
microstates into eight metastable states by an improved Perron-cluster cluster
analysis88,89. To calculate the quantities for meatastable states, we used the
transition probability matrix constructed at microstate level to generate 100 × 300
ms Monte Carlo trajectories. The first 100 ms was used as equilibration and
removed for the calculation of quantities. The stationary populations of metastable
states (Fig. 2a) and the mean first passage time (Fig. 4a) for each transition were
calculated by averaging the values over the 100 trajectories.

Estimation of binding free energies. We applied MM-PBSA method60,61 to
calculate the binding free energies for each metastable state (Fig. 3a). We randomly
selected 10 conformations from each microstate for the MM-PBSA calculations
with SASA model for computing non-polar solvation energy. Default parameters
are used for the calculations and the temperature is set to 298 K (MD simulation
temperature). We performed 1000 trials to estimate the average and standard
deviations for the binding free energy for each metastable state. In each trial, we
randomly selected one conformation from each microstate and calculated its
binding free energy; the binding free energy of one metastable state is then cal-
culated as the weighted sum over those of all the microstates belonging to the
corresponding metastable state, and the weight is determined by the relative
population of the microstate in the respective metastable state.

The MM-PBSA method was capable to estimate the individual residue’s
contribution to the overall binding energy. The averaged binding energy from
T118A was derived in a similar way as illustrated above.

The ensemble-averaged binding free energy contributed by all metastable states
was computed as the weighted sum of the binding free energy of each microstate. The
weight is determined by the population of the respective microstate. Mean and
standard deviation were estimated by performing 1000 iterations of such calculations.

Protein preparation. Escherichia coli glnH was cloned from genomic DNA of
Escherichia coli BL21(DE3) strain by standard PCR and subcloned into a pET28a
vector between EcoR I and Sal I. The plasmid was amplified in DH5α and trans-
formed into BL21(DE3) strain. C-terminal His-tagged GlnBP was expressed in E.
coli BL21(DE3) in LB medium at 37 °C overnight with the induction of IPTG and
purified by Ni2+-NTA agarose affinity chromatography. GuHCl was then added
into GlnBP solution to a final concentration of 6M to fully denature the protein and
detach possibly existing L-glutamine. The mixture was purified by Superdex 75 size-
exclusion chromatography column (GE Healthcare) to refold the protein and keep
the purified ligand-free GlnBP in PBS buffer for further usage. In order to study the
dynamics property of ligand-bound GlnBP, excess amount of L-glutamine was
added into ligand-free GlnBP solution before each experiment.

Site-directed mutagenesis. The mutations of GlnBP in Thr118 were sequentially
introduced by PCR reactions based on the plasmid glnH-pET28a as mentioned in
the protein preparation part. In the first step, the DNA fragment of 5′-end to the
mutation site and the fragment of mutation site to the 3′-end were synthesized by
PCR separately. In the second step, the whole mutated glnH DNA was synthesized
with the above two fragments as template. The mutated glnH DNA was then
subcloned into the pET28a vector for plasmid amplification and protein pur-
ification. All plasmids were confirmed by sequencing.

Isothermal titration calorimetry. ITC measurements were performed on an
ITC200 Micro calorimeter (MicroCal) at 18 °C. All samples were dissolved in 50
mM PBS buffer. The titrations were carried out by injecting 40-μl aliquots of the
ligand (0.5 and 1 mM ligand have used for GlnBP wild type and mutations,
respectively) into protein (0.05 mM GlnBP wild type and 0.1 mM GlnBP
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mutations, respectively) at time intervals of 2 min to ensure that the titration peak
returned to the baseline. The titration data were analyzed using the program
Origin7.0 and fitted with the one-site binding model.

smFRET experiment. The threonine 59 and threonine 130 of GlnBP were mutated
to cysteines by standard PCR protocol. 50 μM GlnBP-T59C/T130C was labeled by
200 μM FRET donor (Alexa fluor 555-maleimide, Thermo Fisher Scientific Inc.,
MA, U.S.) and 400 μM FRET acceptor (Alexa fluor 647-maleimide, Thermo Fisher
Scientific Inc., MA, U.S.) by following the vendor provided protocol. The unreacted
dye was separated from the labeled protein by using size-exclusion
chromatography (SEC).

In order for immobilization of fluorescence-dye-labeled protein to carry out FRET
experiment, the glass coverslip and drilled glass slide were cleaned by sonicating in
water and ethanol three times respectively followed by being etched in plasma cleaner
(PDC-002, Harrick Plasma Inc., NY, U.S.) for 5min to destroy the residual dusts. The
coverslip was stuck on the bottom of the drilled glass slide to make a flow cell. 100 μl
0.1mg/ml poly-lysine-PEG-NTA (PLL(20)-g[3.5]-PEG(2)-NTA, SuSoS AG Inc.,
Switzerland) solution was added to the flow cell and incubated for 20min in order to
create a layer of PEG on the coverslip surface and passivate it. The flow cell was
washed with buffer thoroughly and incubated with 0.1M NiCl2 solution to introduce
Ni2+ to the NTA. After 20min incubation and complete wash, 1 nM fluorescence-
dye-labeled GlnBP solution (50mM phosphate buffer, pH 6.8) was added to the flow
cell in order to tether the protein down to the glass surface upon the binding between
the His-tag of GlnBP and the NTA group on the PEG layer.

The single molecule FRET images were taken by using a home-built wide-field
fluorescence imaging system with an exposure time of 100 ms. The 532 nm laser
beam was focused by a wide field 300 mm convex lens and then coupled to the
microscope (IX-73, Olympus, Japan) through the back port. Eventually the beam
illuminated a circular area on the coverslip and excited the labeled protein
molecules in this area. The fluorescence of donor and acceptor was split by a dual
image splitter (Optosplit II, Andor Technology Plc., U.K.) and the separated
fluorescent images were detected by different areas of an EMCCD camera (iXon
897 Ultra, Andor Technology Plc., U.K.). The acceptor itself was excited at 632 nm
in the control measurement.

The software iSMS90 was used to extract and calculate the traces of fluorescence
intensity of donor and acceptor from consecutively fluorescent images. We
determined the number of FRET efficiency states by HMM analysis using vbFRET
software91 (Fig. 6b). The change points of transitions between states in ideal HMM
trajectories of ligand-bound GlnBP were used to build the transition density plot and
it showed major transitions between four FRET efficiency states. A threshold analysis
was performed to obtain the population of each state in both ligand-free and ligand-
bound GlnBP systems. First, each point on TDP of ligand-bound GlnBP was dressed
with a 2D normalized Gaussian function to facilitate its construction92. Then the
constructed TDP was fitted by six 2D Gaussian functions to obtain the center and
width of peaks. Finally, the population of each state in both ligand-free and ligand-
bound GlnBP systems was obtained by using the threshold which set by the fullwidth
half-height of the Gaussian distribution (Supplementary Fig. 5). These thresholds
were ideal FRET 0.080−0.250 for E1, 0.255−0.415 for E2, 0.435−0.625 for E3 and
0.630–0.790 for E4. Histograms of FRET were obtained by combining all the time
points of raw FRET trajectories corresponding to each state and fitted to the four
Gaussian functions (Supplementary Fig. 6).

Statistics and reproducibility. Unless stated otherwise, the means and standard
deviations for the quantities of each state were calculated based on all the MD
conformations belonging to the specific state.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated and analyzed during this study are included in the article or from the
corresponding author on request. Source data underlying plots shown in figures are
provided in Supplementary Data 1.

Code availability
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