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Dynamical modeling of multi-scale variability
in neuronal competition
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Variability is observed at multiple-scales in the brain and ubiquitous in perception. However,

the nature of perceptual variability is an open question. We focus on variability during

perceptual rivalry, a form of neuronal competition. Rivalry provides a window into neural

processing since activity in many brain areas is correlated to the alternating perception rather

than a constant ambiguous stimulus. It exhibits robust properties at multiple scales including

conscious awareness and neuron dynamics. The prevalent theory for spiking variability is

called the balanced state; whereas, the source of perceptual variability is unknown. Here we

show that a single biophysical circuit model, satisfying certain mutual inhibition architectures,

can explain spiking and perceptual variability during rivalry. These models adhere to a broad

set of strict experimental constraints at multiple scales. As we show, the models predict how

spiking and perceptual variability changes with stimulus conditions.
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Variability is observed at multiple scales in the brain. At the
microscopic level, ion channels and synapses are subject
to random effects of molecular discreteness1,2. Neocortical

neurons fire stochastically and follow Poisson- or super-Poisson-
like statistics3–5. At the cognitive level, variability is observed in
behavior and perception. It is not clear how the variability at one
scale is related to the variability at another scale. Variability at a
small scale could induce variability at a larger scale or be averaged
away and not be relevant. The nontriviality in the connection
between microscopic and macroscopic variability played out
previously in the attempt to explain spiking variability. While it
was well known that ion channels and synapses are subject to
small number biochemical variability, in vitro neuron spiking was
found to be quite reliable when driven6,7. A resolution to this
paradox invokes an attractor state with balanced excitatory and
inhibitory synaptic inputs that yield a net input to neurons close
to threshold so that fluctuations in the inputs drive spiking.
Irregular spiking emerges robustly when the network settles into a
chaotic attractor termed the balanced state8,9. In this case the
variability is due to a deterministic albeit chaotic process. Here,
we examine and quantify the relationship between spiking
variability and perceptual variability.

Variability is ubiquitous in perception. It may serve a func-
tional role for optimizing foraging10, learning patterns such as
songs11,12, and for producing unpredictable trajectories while
evading predators13,14. It may also help to arbitrate ambiguous
circumstances such as that posed in the paradox of Buridan’s ass
who, equally hungry and thirsty, is placed precisely midway
between a stack of hay and a pail of water and cannot decide.
Perceptual variability can break this symmetry and release the ass
from its fatal dilemma. The nature and source of perceptual
variability is an open question. Although noise from the envir-
onment is important, perceptual variability is still observed when
the stimulus conditions are controlled2,15 and even when the eyes
are paralyzed in a visual task (Leon Lack personal communica-
tion). Given that neuronal spiking is correlated with perception,
spiking variability is a compelling etiology for the perceptual
variability5,16. However, the precise mechanistic relationship
between spiking and perceptual variability is unknown.

We focus on perceptual variability during neuronal competi-
tion and particularly perceptual rivalry. Neuronal competition is a
ubiquitous property of the brain, playing a role in cognitive
models of forced choice decision making17,18, flanker-suppressor
tasks19, short-term memory20,21, and other computations22,23.
Perceptual rivalry is a form of dynamic neuronal competition
where the perception alternates between plausible interpretations
given a fixed ambiguous stimulus and neural activity (in many
brain regions) is correlated with the perception24. It is found in
many visual contexts such as binocular rivalry, Necker cube, face-
vase illusion, and motion-induced blindness, and also been
reported for almost all sensory modalities25. The percept dura-
tions in rivalry obey a gamma-like distribution with coefficient of
variation and skewness that is tightly constrained. This dis-
tribution is robust across many conditions, suggestive of intrinsic
variability. It is found for both vision and audition26, across
species27, and across a variety of visual stimulus conditions28.
Despite the pervasiveness of the percept distribution there is no
biophysical explanation for these statistics.

There is a long history of modeling neuronal competition with
biophysically constrained cortical circuits20,29,30. For example, a
circuit with lateral or mutual inhibition can exhibit winner-take-
all dynamics (WTA) where a pool of neurons tuned to a percept
suppresses the remaining pools19,21,31. With the inclusion of a
fatigue mechanism, rivalrous alternations can arise from the
WTA state19,21,29,32. However, rivalry is a challenge for quanti-
tative modeling because of the many experimental constraints.

Some models match the observed perceptual variability without
adding noise but they fail to account for realistic spiking statistics
(irregular, asynchronous spiking)29. Competition-like dynamics
with variability have been demonstrated in deterministic balanced
state networks but they have not been rigorously tested against
perceptual constraints. An unstructured randomly connected
network can produce alternating activity levels between two pools
when receiving different fluctuating external inputs33. With
structured connections and constant input, these models can
exhibit temporary up-states or winnerless competition with
balanced dynamics15,34–36. It has also been found that asym-
metric activity levels in a balanced state can be achieved in mutual
inhibition networks with a mechanism distinct from WTA37. A
WTA network with mutual inhibition and high spiking variability
has been invoked to explain choice probabilities in a perceptual
decision-making task18 but external noise contributed to the
spiking variability. Thus, it remains to be seen whether balanced
state and rivalry dynamics can coexist.

It is not clear that the balanced state can coexist with rivalry
prima facie. Balanced state theory is predicated on a dynamic
balance between excitation and inhibition. Rivalry strongly
depends on imbalanced connections (e.g., mutual inhibition)
between percept-encoding neuronal pools to produce a WTA
state, and on a fatigue mechanism (e.g., spike-frequency adaption,
synaptic depression), which is important for alternations. Neu-
ronal adaptation has mixed effects. It can either aid irregularity by
homogenizing synaptic inputs and facilitating a balanced state38,

or increase synchrony39,40 and thus be antagonistic to commonly
observed asynchrony. Finally, matching variability at one scale
does not ensure matching at another scale without invoking
additional mechanisms. For example, spiking variability may be
too large or too small in magnitude or have no impact for per-
ceptual variability. Thus, it is not a priori obvious how rivalry and
all of its constraints can include biophysical spiking and whether
the balanced state is a viable solution.

Here we show that unstructured networks cannot explain rivalry
but networks with structured mutual inhibition, adaptation, and
network-induced biophysical spiking statistics can. We deploy the
balanced state theory to show that this network breaks global bal-
ance; the dominant pool is balanced but the suppressed pool is not
although it fires irregularly due to random input from the dominant
pool. The mechanism is also robust to connection architectures. In
summary, we provide a self-consistent mechanism for spiking and
perceptual variability.

Results
Unstructured network does not capture rivalry. We evaluated
competition dynamics in an unstructured network (Fig. 1a) with
balanced state dynamics and tested if it could match the empirical
constraints of rivalry (see Table 1). Homogenous drive resulted in
biophysical spiking and statistically homogenous irregular activity
as predicted by the balanced state theory (Fig. 2a)8,9. The addition
of a fatigue mechanism did not rescue the model (see Supple-
mentary Information: Adaptation effect in the unstructured net-
work). If subsets of neurons receive heterogeneous drive (Fig. 2b)
then competition between two pools can emerge. This has been
shown previously and associated with a (perceptual) decision
making, choice task33, and thus applicable to our investigation. We
found that the model resulted in epochs where one pool had a
higher spiking rate than the other (Fig. 2c); however, the model
failed to capture Levelt’s 4th proposition (Fig. 2d). In addition, the
dominance duration distributions were not stable to changes in the
report threshold (Fig. 2e). As shown in Fig. 2f, the competitive
dynamics in the unstructured network mirrored the external
drive33. The tight match between the drive and the network activity
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demonstrates that alternations resulted from the network activity
tracking and amplifying differences in the feedforward drive. Thus
this unstructured network does not generate rivalry dynamics itself.
It could satisfy all empirical constraints if it received inputs from a
rivalry source that satisfied the perceptual constraints if not the
spiking constraints. However, this leaves the original source of the
rivalry dynamics unexplained.

Mutual inhibition networks can satisfy all constraints of rivalry.
We evaluated two mutual inhibition network architectures. One
was a discrete mutual inhibition network that was previously used
to model rivalry, flanker-suppressor tasks, and normalization19

(Fig. 1b). The second was a modification of a continuum network
used previously for rivalry and other tasks20,29 (Fig. 1c). Neither
of these systems had been shown to satisfy all of the empirical
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Fig. 1 Three network architectures. a Unstructured network receives either a homogenous nonfluctuating drive (Case 1) or each half of the network
receives independent stochastic (fluctuating) drive (heterogeneous drive, Case 2). b Discrete mutual-inhibition network consists of two pools of excitatory
and inhibitory neurons tuned to a specific percept. The architecture of each pool is an unstructured network as in a and receives nonfluctuating drive to
excitatory neurons only. Mutual inhibition model consists of long-range connections from excitatory neurons in one pool to inhibitory neurons in the other.
c Continuum network consists of neurons arranged in excitatory and inhibitory rings with spatially structured coupling between all neuron types. Two sets
of excitatory neurons on opposite sides of the ring (representing different percept tuning) receive nonfluctuating feedforward drive. Red arrow shows
example of the spatial profile for excitatory-to-excitatory synaptic strength from a single presynaptic neuron. Strength is periodic and maximal at the
presynaptic neuron (at red arrow)

Table 1 Definitions and experimental constraints

Definitions
Population—set of neurons in a synaptic class, i.e., a set of excitatory or inhibitory neurons
Pool—a network of excitatory and inhibitory neurons tuned to a percept
Dominant pool—actively spiking neuronal pool (determined by the excitatory population activity), which corresponds to dominant percept
Suppressed pool—weakly active or inactive neuronal pool corresponding to suppressed percept
Dominance duration—time duration dominant pool remains highly active
Report threshold—minimum reportable event duration
Drive—external feedforward current (mVms−1)
Experimental constraints
Perceptual constraints—Levelt’s proposition56:
1. Mean dominance duration is on the order of seconds.
2. Levelt’s 4th proposition—mean percept duration decreases with increased drive
3. Classical Levelt’s 2nd proposition—starting from the point where the stimulus drive gives equal dominance durations across the pools (equi-

dominance), then weakening drive to one pool increases the opposite pool’s predominance
4. Modified Levelt’s 2nd proposition—from the equi-dominance point, strengthening drive to one pool increases the same pool’s predominance
5. Maximal alternation rate—when modifying drive to one pool, the rivalry alternation rate is fastest when both pools have equal dominance times41

Variability constraints:
Perceptual variability:
1. Dominance-time durations follow a gamma distribution with coefficient of variation (CVD) between 0.4 and 0.828

2. Dominance statistics are robust to chosen report threshold
3. Mode of dominance time distribution is to the right of the report threshold
Spiking variability:
1. Mean spike-count correlations less than 0.357

2. Spike count Fano Factor is between 0.9 and 2.04

3. Coefficient of variation for interspike intervals is between 0.53 and 27 (target of 1.0 used for model fitting)
4. Mean spike-rates are between 5 and 40 Hz during upstates, and below 10 Hz when suppressed4
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constraints in Table 1. We numerically scanned parameter space
in both architectures to find regions where the rivalry constraints
were satisfied. The networks were completely deterministic and
received constant nonfluctuating drive. Figures 3–5 show results
for single example models of each network architecture (discrete
and continuum) that matched the constraints, where for each
model all parameters except drive were fixed. A summary of
matched perceptual constraints is shown in Fig. 3, perceptual
variability results in Fig. 4, and spiking variability in Fig. 5. In
Figs. 3 and 4, points are multiple realizations across drive
strengths for the example models. Results for Fig. 5a–e are for a
single realization and 5f for multiple realizations of the models.

The models matched all of the Levelt’s proposition constraints.
As shown in Fig. 3a, the dominance times decreased with strength
in both models, in keeping with Levelt’s 4th proposition. In
response to asymmetric drive strengths (Fig. 3b), both models
matched the characteristic dominance duration profiles seen in

ref. 41 and produced the characteristic ‘X’ shape of the classical
and modified Levelt’s 2nd proposition. The alternation rate was
maximal when both populations have the same dominance
duration as expected.

Perceptual variability constraints could be satisfied by both
models while still satisfying Levelt’s propositions. Dominance
durations were irregular (see Fig. 4a) and showed gamma-like
statistics. The distributions (see Fig. 4b, c) automatically matched
the shape parameter from experiments on real subjects42

(indicated by dashed lines). (The shape parameter was not part
of the model fitting scheme.) Fig. 4d shows that a plot of standard
deviation vs mean of dominance duration is well fit by a
regression line with the empirically observed CVD slope28.
However, when CVD is computed independently for each drive
strength, it shows a small but significant decreasing trend with
increasing drive strength while staying within the empirical range
(Fig. 4e). This has not been reported by others thus far. This small

2000a

b

c

d

e

f

3.0

2.5

2.0

1.5

1.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.35

0.30

0.25

0.20

0.15

0.10

1000

N
eu

ro
n 

in
de

x

0

2000

1000

N
eu

ro
n 

in
de

x

A
ct

iv
ity

0

0 2 4 6

Seconds

8 10

0 2 4 6

Seconds

8 10

0 2 4 6

Seconds

8 10 0

2

1

0

–1

–2

2 4 6

Seconds

8 10

0.0 0.5 1.0 1.5

Dominance duration (s)

2.0 2.5 3.0

2 4 6

Mean drive (mV/ms)

D
riv

e 
(m

V
/m

s)

Fr
eq

ue
nc

y

Raw
300 ms threshold

Δ drive
Network response

750 ms threshold

M
ea

n 
du

ra
tio

n 
(s

)

8 10 12

Fig. 2 Unstructured network does not comply with rivalry constraints. a Case 1: homogenous drive raster (excitatory neuron spiking across time) exhibits
homogenous response. Case 2: heterogeneous drive (b–f) b heterogeneous drive consists of independent stochastic processes for subsets of neurons
within the unstructured network. c Excitatory neuron raster showing alternating activity levels between two pools in response to the heterogeneous input in
b. d Levelt’s 4th proposition is not obeyed: percept durations increase with drive strength instead of decreasing. e Dominance time distribution of random
network (as in c). Dominance duration coefficient of variation (CVD) depends on the report threshold (see Table 1: definitions). For example, CVD are 1.9,
0.61, and 0.34 for 0, 300, and 750ms report thresholds, respectively. f Percept state variable (z-scored) reflects differences in the drives in b, supporting
that the dominance duration statistics mirror the drive fluctuations

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0555-7

4 COMMUNICATIONS BIOLOGY |           (2019) 2:319 | https://doi.org/10.1038/s42003-019-0555-7 | www.nature.com/commsbio

www.nature.com/commsbio


trend could serve as a falsifiable prediction for the models. In
addition to CVD, Cao et al. showed that for many rivalry
conditions the skewness of the dominance durations is within 1–4
times the CVD. We did not constrain skewness but posthoc
discovered that our examples fell within this range providing an
independent validation of the models. The average skewness/CVD

was 3 and 2.5 for the discrete and continuum models,
respectively. This is higher than the twofold scaling suggested
by Cao et al. but within the empirical range they reported. In
addition, the histograms closely matched empirical parameters
from Robertson et al. (Fig. 4b, c).

In addition to matching percept variability, the networks
exhibited biophysical spiking (Fig. 5a). The example models

exhibited irregular (Fig. 5b, c) and asynchronous (Fig. 5d, e)
spiking. The average interspike-interval coefficient of variation
CVISI was 1.22 during dominant states and 1.19 during the
suppressed states. The average spike-to-spike correlations rsc was
0.02 during dominant states, and 0.06 during suppressed states.
All model spiking statistics fell well within the empirically
reported ranges (indicated by dashed lines). As shown in Fig. 5f,
we found a relationship between drive and spiking variability but
in the opposite direction of CVD. Increasing drive strength
decreased perceptual variability but increased spiking variability,
when Levelt’s 4th proposition is obeyed. This forms an empirical
prediction and test of the model during realistic stimulus
conditions. In the next section we examine the underlying
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mechanism for the spiking variability and whether it conforms to
balanced state theory.

Overall it was easier to find parameters that matched
experimental constraints in the discrete versus the continuum
model. For the discrete model, rivalry dynamics were found by
starting with intra-pool parameters that led to biophysical spiking
in each pool, then adjusting mutual inhibition strength until
WTA appears. We then adjusted the adaptation strength and
time constant to achieve rivalrous alternations. Since adaptation
can affect spiking variability, parameters often had to be
readjusted to recover biophysical spiking. Once both spiking

and perceptual variability converged to the empirical constraints
then, remarkably, rivalry dynamics satisfying all empirical
constraints naturally emerged. The continuum model was harder
to match since Gaussian footprints overlap and need to
simultaneously satisfy both local and global dynamics. We used
a random sampling approach to find conditions that matched all
constraints since the effect of the parameters on local and global
dynamics were not easily untangled. In numerical experiments,
we found that in the continuum model, parameters for WTA
were about tenfold more difficult to locate than for biophysical
spiking, and that the combination of the two was rare but not
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overly difficult to find (see Supplementary Information: Con-
tinuum model parameter search).

State dependent mechanisms for spiking variability. The results
above demonstrate that the fully deterministic coupled network
can support irregular neuron spiking in the presence of rivalry.
Here we examine whether this variability is quantitatively
explained by the balanced state theory of van Vreeswijk and
Sompolinsky8,9. Balanced state theory argues that an attractor
state for irregular spiking can exist in a network of excitatory and
inhibitory neurons where the net mean input to each neuron in
the network is balanced near the threshold of spiking and non-
periodic firing is self-consistently supported by the fluctuations in
the input. The theory shows that this balanced state is maintained
in the absence of any fine tuning of the coupling weights. Inge-
niously, the theory demonstrates that regardless of the inherent
nonlinearities of the intrinsic neuron dynamics, the balanced state
attractor can be completely determined by the solutions of a
purely linear system. Given that rivalry depends on mutual
inhibition to allow for the suppression of one pool by another, it
is not a priori certain that the balanced state theory would be
directly applicable for rivalry.

We first consider the discrete architecture of a coupled network
of four excitatory and inhibitory populations organized into two
pools but in the absence of fatigue. Following the prescription of
balanced state theory, we represent the state of the network by the
mean spiking rates of each population, re1, ri1, re2, ri2, and the
mean external drive to each population, fe1, fi1, fe2, fi2. We then
suppose that the input to a neuron in one population from
another population is proportional to the firing rate of the input
population weighted by the mean coupling weight between the
two populations. The total input to a population is then given by
the sum over all the inputs from the other populations and the
external drive. For example, the input to population e1 is we1e1re1
−we1i1ri1+we1e2re2−we1i2ri2+ fe1.

The balanced state for any set of coupling weights and external
drives is given by the set of rates such that the mean input to every
population is at threshold (in the mean field limit). This condition
can be written in matrix form as Wr+ f= 0, where r is the vector
of spiking rates for each population, f is the vector of external
inputs, andW is the 4 × 4 matrix of coupling weights between each
population. A unique solution for r exists if and only if f is in the
column space of W. This immediately shows that if the two pools
are symmetrically coupled (i.e., we1e1=we1e2=we2e1=we2e2, etc.)
then a solution cannot exist if the external drive is not symmetric
between the two pools (as in our unstructured network with
heterogeneous drive and noted in ref. 43). Thus, a symmetrically
coupled unstructured network cannot support a global balanced
state. However, a balanced state can be supported if the symmetry
is broken. In our structured discrete network, each individual
pool is identically connected but the two pools are connected only
through excitatory-to- inhibitory connections. The matrix
equation has the form

ð1Þ

The sparse matrix allows symmetry between the pool rates to
be broken and a solution for r is possible. Details of all
calculations are given in the Supplementary Information:
Balanced state theory. When tested whether this mutual
inhibition balanced state theory explains the spiking variability

of our simulation and as we show below, it depends on the
dynamical (psychophysical) state of the system.

We examined the applicability of the balanced state theory
(classical single-pool theory and the two-pool mutual inhibition
theory) to the neuronal network simulations by quantitatively
comparing the predicted spiking rates, r, from the theory to the
actual rates from the spiking network. Figure 6 shows the firing
rates of all four populations as a function of the mutual inhibition
weight between pools, wieLONG

. For low wieLONG
the network is in a

symmetric state where both pools have the same rates. The
predictions of the mutual-inhibition balanced state theory (blue
lines) match the simulated rates (black dots). The rates of the
excitatory populations fall at a faster rate with wieLONG

than the
inhibitory populations as predicted by the theory and also
consistent with a state of normalization19 where the mutual
inhibition induces a sublinear response to inputs. Thus, irregular
spiking in a balanced state can coexist with a psychophysical state
of normalization.

As wieLONG
is further increased, the symmetric normalization

state makes a transition to an asymmetric WTA state19 (a
precursor for rivalry) where the excitatory neurons of the
dominant pool has higher activity than the suppressed
pool (Fig. 6a, c) and vice versa for the inhibitory populations
(Fig. 6b, d). After this transition, the mutual inhibition theory no
longer matches the simulations. However, if we consider the
pools to be uncoupled then the uncoupled single-pool theory
(green line), which corresponds to the classic balanced state
solution8,9, matches the firing rate of the dominant pool but not
the suppressed pool. The dominant pool is effectively uncoupled
because the input from the suppressed pool is negligible while the
suppressed pool is not in a balanced state because the local
recurrent excitation cannot balance the inhibitory input from the
dominant pool. This can be taken to represent the converse to the
scenario of Ebsch and Rosenbaum. Although not in a balanced
state, the suppressed pool still fires irregularly and asynchro-
nously (as shown in Fig. 5) because it is driven by the balanced
irregularly spiking dominant pool. The symmetric to asymmetric
state transition was actually anticipated by the appearance of a
singularity in the balanced state theory solutions at a critical value
of wieLONG

(indicated by the discontinuity in the blue lines in
Fig. 6). The singularity represented a breakdown of the mutual
inhibition balanced state theory and this was borne out by the
state transition in the simulations.

The above results will still apply in the presence of neuronal
adaptation and hence rivalry if the adaptation time constant is
slow. The effect will be equivalent to adiabatically changing the
external drive. In the symmetric state, this will simply weaken the
external drive and the system will settle into a new symmetric
state with lower rates while preserving irregular spiking due to the
balanced state. In the asymmetric state, the dominant pool will be
balanced while the suppressed state will not. The adaptation will
relax in the suppressed pool until the net input is sufficiently
strong to overcome the inhibition from the dominant pool and
cause a switch in dominance, whereupon the newly dominant
pool will be in a balanced state while the newly suppressed pool
will not.

Discussion
We asked if psychophysical responses (specifically rivalry) and
the balanced state can coexist in a single canonical circuit model,
and thus provide a self-consistent model for spiking and per-
ceptual variability. We found that the answer is yes and no.
Indeed, spiking and perceptual variability (and other psycho-
physical phenomena) are explained by the same deterministic
system. However, further investigation of the balanced state
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theory reveals a deviation from pure balance. The two-pool
mutual inhibition balanced state theory we used is applicable to
WTA dynamics and cases where both percept-pools are active
such as in normalization19,44. When we analyzed the mechanism
for biophysical spiking and WTA, we found that the dynamics are
due to a mixture of balanced and imbalanced states within the
network. This gives an interesting twist to current notions of
spiking in the brain. Irregular, asynchronous spiking may imply
that the brain is either in a balanced state or it is being driven by a
balanced state. In our case, mutual inhibition connections were
sparse which maintained the variability in the drive to the
imbalanced pool. Alternatively Darshan, van Vreeswijk, and
Hansel45 showed how variability could be maintained in the more
general case, which could be added to our model.

Our findings also augment our understanding of rivalry. Riv-
alry is an alternation in percept states that depends on a neuronal
fatigue process such as spike-frequency adaptation or synaptic

depression. During a dominance epoch, the dominant pool is
above a neuronal threshold while the suppressed pool is sub-
threshold. There are two dynamical possibilities for how alter-
nating dominance could occur. The first is called release, where a
dominance switch occurs when neurons in the dominant pool
fatigue to the point of falling below the spiking threshold and stop
spiking. The second is escape, where neurons in the suppressed
pool recover from fatigue and overcome the suppressing inhibi-
tion and thereby become dominant46. Levelt’s propositions
require the escape mechanism32. This necessity is clearly seen in
Levelt’s 4th proposition, which states that dominance duration
increases with decreasing drive strength. A release mechanism
would predict the opposite since decreasing drive would mean
that a fatiguing neuron would drop below threshold faster and
thus decrease dominance duration. However, under escape, a
decreased drive would prolong the time of a suppressed neuron to
recover from fatigue and spike and thus increase the dominance
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Fig. 6 Transition from balanced to mixed balanced state across psychophysical states: a dominant pool excitatory population, b dominant pool inhibitory
population, c suppressed pool excitatory population, and d suppressed pool inhibitory population. Black dots are simulation results. Blue lines are the two-
pool mutual inhibition (four population) balanced state theory predictions. Green lines are the classic, single-pool (two population), balanced state theory
predictions. Blue abscissa tick marks indicate the symmetric state and red indicate asymmetric state. Irregular spiking in the symmetric state is explained
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suppressed pool does not conform to balanced state theory although it still fires irregularly due to irregular input from dominant pool. Transition from
symmetric to asymmetric state is anticipated by a singularity in the theory indicated by the discontinuity in the blue lines
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duration. The dominance duration is given by the time to escape,
which is governed by the time constant of the fatigue mechanism
(e.g., adaptation). However, the precise moment of escape is
determined by the net input to the neuron as a function of time. If
the neuron input is subject to uncertainty or noise then the time
to escape can be stochastic and if the approach to threshold is
shallow then even a small amount of noise can lead to a large
amount of dominance duration variability. We show that self-
induced variability of the balanced state in the dominant pool is
sufficient to act as the noise source in the suppressed pool to
explain perceptual rivalry. This is a biophysical realization of the
Ehrenfest stochastic process proposed by Cao et al. for rivalry,
where the stimulus dependent activation rate of the Ehrenfest
process corresponds to the stimulus dependent escape rate of the
suppressed population.

Further examination of our model, including different neuron
models and architectures, is warranted to discover the extent and
robustness of our findings. Our analyses were also restricted to
the two-pool competition case. This represents the minimal
competition model that explains many general rivalry effects.
However, specific effects such as mixed perception in binocular
rivalry may require three or more pools. The model can be
expanded for these cases. We propose a refinement to a prior
hypothesis for the invariance of perceptual variability across sti-
mulus conditions. Cao et al. noted that perceptual variability
(CVD) was near 0.6 across many competition conditions from
binocular rivalry to motion-induced rivalry. This led them to
hypothesize an invariance for rivalry variability. However, we
found that increased drive strength can decrease the CVD; though,
some parameter cases were more stable. This suggests that there
may be finer structure within the experimental uncertainty
observed in Cao et al. Similarly, we observed a spiking variability
effect due to drive (when controlling for dominant or suppressed
state), but in the opposite direction of perceptual variability.
Notably this is within the stimulus range of behavioral experi-
ments and forms an additional prediction of the model. It is
paramount to test these model predictions in experiments to
further refine the model. Further theoretical work is warranted to
investigate the relationship between drive, scale, and other circuit
parameters.

Does this model have utility and implications beyond rivalry?
Rivalry stands out among perceptual phenomena since concrete
changes in perception occur despite a static stimulus, thus pro-
viding insight into internal computations of the brain. It has even
been considered a tool for investigating neural correlates of
consciousness47. It is not surprising then that rivalry is one of the
target behaviors of a developing canonical cortical circuit theory
of cognition21. Similar circuit architectures can explain putative
cognitive primitives such as short-term memory and decision
making and have been used to interpret differences in cognitive
measures among clinical, psychiatric cohorts48–51. A major
challenge of psychiatric models is how to scale from the mole-
cular perturbations underlying mental illness to complex psy-
chopathology. Here we present a self-consistent theory for spiking
and perceptual variability that bridges two important levels.
However, this raises the question of the role of molecular varia-
bility, which exists in many forms2. It does not seem to be suf-
ficient to explain spiking variability9,33 and, in light of our
findings, it is unnecessary for a major form of perceptual varia-
bility. However, since the balanced state keeps neurons near
threshold then small perturbations due to molecular noise could
still have large effects. This will be interesting to study in the
future. We propose that the influence of molecular variability is
already contained within a set of hyperparameters of the cortical
circuit governing the distribution of time constants and synaptic
strengths.

Theories that tie together biology at multiple scales will be
useful for making psychiatric and cognitive problems tractable.
One application is the excitation-inhibition (EI) imbalance
hypothesis21,51,52 in mental illness, a pervasive but ill-defined
hypothesis in clinical research. Our model is based on two
important EI relationships, the balanced state and mutual inhi-
bition, and thus is a good candidate for exploring these questions.
EI can be manipulated in the model to make clinical research
predictions at multiple scales of behavior. The model can also be
used as middle ground to map clinically associated molecular
factors to the circuit parameters to make further predictions.

Methods
Model neurons. Neuronal dynamics were modeled as leaky integrate-and-fire
neurons with adaptation that obey

dvi
dt

¼ fi þ si tð Þ �
vi
τm

� γai tð Þ; vi<θ ð2Þ

vi ! vi � θ; vi ¼ θ ð3Þ

dsi
dt

¼ � siðtÞ
τs

þ
X

wijδðt � tjspikeÞ ð4Þ

dai
dt

¼ � ai
τa

þ δðt � tispikeÞ ð5Þ

where i, j are neuron indices, v is neuron voltage, f is feedforward current drive, τm
is the membrane time constant, w is the synaptic strength from neuron j to i, s is
synapse strength, τs is the synaptic time constant, a is an adaptation variable, γ is
the adaptation strength, τa is the adaptation time constant. The voltage threshold
was 20 mV and the membrane and synaptic time constants were 20 and 2 ms,
respectively. For the discrete and continuum case examples, the adaptation time
constants were 350 and 650 ms and adaptation strengths were 0.44 and 0.013,
respectively. We used a modified Euler’s method53 for simulations. In this scheme
spike times (tspike) were interpolated where, at a given time step, any neuron that
was above threshold was reset as its current voltage minus threshold. The time
interval, h, was 0.1 and we verified that the dynamics were consistent with h= 0.01.

Network architectures. We studied three randomly connected cortical circuit
architectures (see Fig. 1): unstructured network, discrete mutual inhibition net-
work, and structured continuum network. All network simulations had a total of
4,000 neurons. We checked to see that results did not qualitatively change with
neuron number.

The unstructured network was evenly split between excitatory and inhibitory
populations. Each neuron received k= 600 (in-synapses) randomly chosen
connections for each neuron type (excitatory or inhibitory), with different synaptic
strengths depending on the type of synapse. For example, an excitatory neuron
received k excitatory and another k inhibitory synapses. The synaptic strengths for
the example case were Aee= 12.5, Aie= 20, Aei= 50, Aii= 50 divided by the
square-root of k, where Aij is the synaptic strength from population j to i.

The discrete mutual inhibition network consisted of two unstructured-network
pools as above, with 2000 neurons and k= 200 forming each percept pool. The two
pools were also linked by k= 200 randomly chosen long-range connections from
excitatory-to-inhibitory neurons (AieLONG

) (Fig. 1b top). In this case then, an
inhibitory neuron not only received k excitatory and inhibitory synapses from
within its pool but also k excitatory synapses from the competing pool. Synaptic
strengths for the case example were Aee= 10.5, Aei= 20, Aie= 30, AieLONG

= 30, and
Aii= 45 divided by the square-root of k.

The continuum network consisted of 80% excitatory and 20% inhibitory
neurons. Neurons were arranged evenly on a ring. They were connected with
probability p and a synaptic strength obeying the von Mises distribution:

wC
ij ¼

ACexpðκCcosðθi � θjÞÞ
pN�2πIoðκCÞ

ð6Þ

where wC
ij is the synaptic weight for synapse class C (e.g., excitatory-to-excitatory,

inhibitory-to-excitatory) from presynaptic neuron j to postsynaptic neuron i, AC is
a class dependent real amplitude, κC governs how fast the weights decayed, N is the
number of postsynaptic neurons, p is the probability of a synaptic connection, θ is
the neuron location in radians, and Io is the modified Bessel function of order 0.
For the case example, κee= 0.26, κei= 0.93, κie= 0.97, κee= 0.5, Aee= 84, Aei=
314, Aie= 1319, Aii= 689, and p= 0.34.

Drive. We manipulated feedforward drive to neurons in several ways. For the
unstructured network we examined two cases: homogenous and heterogeneous
drives. In the homogeneous case, excitatory (E) neurons received the same
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nonfluctuating drive that was slightly higher than the inhibitory (I) neurons. For
the heterogeneous case, the network was divided into two excitatory pools each
receiving an independent fluctuating drive, modeled as Ornstein–Uhlenbeck sto-
chastic processes (mean for E= 0.2, mean for I= 0.1, SD= 1, τ= 500 ms). The OU
time constant was chosen to obtain reasonable dominance durations. All structured
network simulations received nonfluctuating drive to only the excitatory neurons.
For the discrete mutual inhibition model, all excitatory neurons received a stimulus
drive. For the continuum model, only a subset of excitatory neurons received this
input. Levelt’s propositions were investigated by changing drive strengths as
detailed in figures and computer code.

Measures. Dominance durations were estimated by converting spike rates across
pools into a percept state variable P, where uA and uB were the sum of spikes across
excitatory neurons of each pool for 50ms time windows. In each window, the
percept state was assigned to (uA− uB)/(uA+ uB), which is a number between −1
and 1. We divided this domain into even thirds to classify the percept state: percept
A (P > 1/3), percept B (P <−1/3), and neither percept A or B (−1/3 < P < 1/3). A
dominance duration was measured as the interval between state changes. Spike
count Fano factor and spike-count correlations were computed over 100 ms win-
dows for each neuron. The interspike-interval coefficient of variation (CVISI) was
estimated for each neuron across simulation blocks. We isolated dominant vs
suppressed states and calculated statistics for each state.

Statistics and reproducibility. Figures 3d, e and 5f were fit with linear models for
descriptive purposes. Significance is reported as two-tailed P-values. For Fig. 3d, e,
n= 999 and 500 drive strength samples for the discrete and continuum models
respectively, and for Fig. 5f, n= 49 drive strength samples.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data used to generate the main figures54 are available via Figshare at https://doi.org/
10.6084/m9.figshare.8869109.v1.

Code availability
Computer code55 with detailed methods can be found at https://github.com/
ShashaankV/multiscalebrainvar. Data can be generated using the published parameters
here and in the code. Data used to generate figures54 are available via Figshare at https://
doi.org/10.6084/m9.figshare.8869109.v1.
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