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Targeting p16-induced senescence prevents
cigarette smoke-induced emphysema by
promoting IGF1/Akt1 signaling in mice
Christopher T. Cottage 1, Norman Peterson1, Jennifer Kearley1, Aaron Berlin1, Ximing Xiong1, Anna Huntley1,

Weiguang Zhao1, Charles Brown1, Annik Migneault1, Kamelia Zerrouki1, Gerald Criner2, Roland Kolbeck1,

Jane Connor1 & Raphael Lemaire1

Senescence is a mechanism associated with aging that alters tissue regeneration by depleting

the stem cell pool. Chronic obstructive pulmonary disease (COPD) displays hallmarks of

senescence, including a diminished stem cell population. DNA damage from cigarette smoke

(CS) induces senescence via the p16 pathway. This study evaluated the contribution of p16 to

CS-associated lung pathologies. p16 expression was prominent in human COPD lungs

compared with normal subjects. CS induces impaired pulmonary function, emphysema, and

increased alveolar epithelial cell (AECII) senescence in wild-type mice, whereas CS-exposed

p16−/− mice exhibit normal pulmonary function, reduced emphysema, diminished AECII

senescence, and increased pro-growth IGF1 signaling, suggesting that improved lung function

in p16−/− mice was due to increased alveolar progenitor cell proliferation. In conclusion, our

study suggests that targeting senescence may facilitate alveolar regeneration in COPD

emphysema by promoting IGF1 proliferative signaling.
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Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death in the United States1 and is asso-
ciated with a compromised quality of life. The economic

burden associated with the disease is substantial. Characteristics
of COPD include inflammation2, tissue remodeling, and
emphysematous alveolar destruction3, leading to enlarged air
spaces with less surface area capable of gas exchange4,5. Lung
exposure to contaminants and pollutants are risk factors for
COPD, including cigarette smoking (CS)6. Aside from smoking
cessation, no therapeutic intervention has been identified and
research continues to investigate the molecular mechanisms
driving disease progression. Many of the pathological processes
identified in COPD are mediated by CS, including altered
homeostatic apoptosis proliferation, production of extracellular
matrix (ECM)-degrading proteases and oxidative stresses, as well
as telomere dysfunction, leading to the activation of the DNA
damage response pathway and ultimately cellular senescence7–9.
Senescent cells produce and secrete numerous harmful pro-
inflammatory and degrading mediators, collectively called the
senescence-associated secretory phenotype (SASP). SASP proteins
have been shown to be upregulated in pathologies related to
accelerated aging10 and are known to perpetuate inflammation
and tissue remodeling in COPD11–13. Development of effective
therapeutics to combat senescent cells may provide clinical
benefit.

A universal marker for cell senescence does not exist but
most senescent cells express p16 (p16ink4A), a cell cycle inhi-
bitor that targets cyclin-dependent kinases (CDKs) and is
important in wound-healing and tumor suppression10,13–17.
Removal of p16+ senescent cells has been shown to be an
efficient way of extending healthspan and reversing senescence-
associated pathologies18–20. In transgenic mice overexpressing
p16, cell proliferation is dramatically reduced and tissue
regeneration is accordingly diminished, similar to that of an
aged mouse21. Age-related replicative and regenerative signal-
ing loss correlates with the diminution of the insulin/insulin-
like growth factor (IGF1) pathway22. The IGF1 pathway plays a
central role in various phases of the cell cycle, including pro-
liferation, survival, and differentiation23. IGF1 asserts these
many mechanisms through downstream Akt activity24. The
serine/threonine kinase known as Akt regulates cell survival
and proliferation in the lung through phosphorylation of sev-
eral anti-apoptotic proteins, but can also stimulate proliferation
by promoting cyclin D accumulation25,26. Cyclin D progresses
the cell cycle from G1 to S by binding to CDK4/6 and phos-
phorylating retinoblastoma27. By binding to cyclin D, p16
prevents cell cycle progression and proliferation28.

In the current study, we hypothesized that p16 plays a role in
the pathological processes associated with smoking and COPD,
and that deletion of p16 protects the lung from the develop-
ment of emphysematous-like tissue remodeling. We examined
human lung tissue from COPD patients and normal control
subjects, and found a substantial increase in p16-expressing
alveolar cells in COPD patients. Using a transgenic mouse
deficient for p16, we demonstrated that lungs of mice lacking
p16 were structurally and functionally resistant to CS-induced
emphysema due to activation of IGF1/Akt regenerative and
protective signaling.

Results
p16 expression is increased in human COPD lungs. To assess
the expression and localization of p16 protein in human COPD/
emphysema, IHC was carried out on lung biopsies from age-
matched patients diagnosed with emphysema, normal non-
smokers, and normal (non-diseased) smokers. Supplementary

Table 1 displays patient clinical data. Sections from normal non-
smokers had little p16 staining, whereas normal smokers had low
sporadic expression (p16 in red, Fig. 1a). COPD patients showed
high expression of p16 across the lung, including bronchial and
alveolar epithelia, and interstitial cells (Fig. 1b, c). Senescence was
assessed in alveolar type II cells (AECII) by double IHC staining
of p16 and SPC. We found that p16 is expressed in ~13.8% of
SPC+ alveolar type II cells (Fig. 1d), consistent with a reduced
AECII population in COPD lungs (Fig. 1e) and suggesting a role
of senescence in impaired alveolar regeneration in COPD lung.
Senescence was also assessed in endothelial cells by p16 and
CD31 IHC staining on serial sections. p16 rarely co-localized with
CD31, suggesting senescent endothelial cells are not dominant
contributors to COPD pathology (Supplementary Fig. 1).

p16 deletion blocks the pathophysiological changes associated
with cigarette smoke. In order to evaluate the role of the p16-
mediated senescence pathway, we utilized a transgenic mouse in
which firefly luciferase protein is knocked in downstream of
the p16 promoter, functionally knocking out p16 expression
(p16−/−)28. Wild-type (p16+/+) and p16−/− mice were exposed
to cigarette smoke (CS) for 4 months. Ex vivo isolation and
imaging of the lungs was carried out (Fig. 2a). CS exposure
induced a fivefold increase in p16 promoter-driven luciferase
activity compared with room air (RA, Fig. 2b). In addition to
bioluminescence, luciferase expression was detected by IHC.
Minimal luciferase was expressed in RA lungs, yet luciferase
staining was detectable in CS-treated lungs in multiple cell types,
including AECIIs, macrophages, and interstitial cells (Fig. 2c). p16
RNA increased ~10-fold in p16+/+ mice upon CS exposure
(Fig. 2d). PCR analysis confirmed that p16−/− lungs do not
express p16 with or without CS. Concomitant to p16 expression,
senescence-associated β-gal activity increased in p16+/+ lungs
treated with CS; this induction did not take place in p16−/− lungs
(Fig. 2e).

Pulmonary structure and function were also examined after
4 months of CS. In vivo respiratory mechanics were evaluated using
Flexi-vent. CS substantially increased static lung compliance,
pressure/volume, and P/V area in p16+/+ lungs (Fig. 3a), consistent
with pulmonary emphysema. These changes were not detected in
p16−/− CS lungs, which were comparable to RA-treated mice. CS-
induced changes in pulmonary compliance typically reflect
reductions in elastic recoil caused by destruction in the alveolar
wall and loss of tissue33. Accordingly, histological analysis showed
that CS exposure causes large emphysematous alveoli alterations in
p16+/+ lungs. Deletion of p16 markedly reduced CS-induced
alterations (Fig. 3b). MLI quantification validated histology
observations (Fig. 3c). MLI in p16+/+ lungs exposed to CS were
double that of RA-treated, whereas p16−/− lungs exposed to CS
showed minimal increases, suggesting a role of p16 in alveolar
structure homeostasis. Unlike p16+/+ mice, CS minimally affected
p16−/− mice weight, as they continue to gain weight throughout
exposure. However, this can be attributed to CS-associated nicotine
appetite suppression and not emphysema34 (Fig. 3d).

Mediators known to be upregulated in COPD, including
MMP-12, IL-33, and TGFβ1, increased in p16+/+ lungs at both
the RNA (Fig. 3e) and protein (Fig. 3f) levels after 4 months of CS
compared with RA. In contrast, CS-induced levels of these
mediators were reduced in p16−/− mice (Fig. 3e). Increases of IL-
33 and TGFβ1 protein were observed in p16−/− mice; however,
the protein levels (Fig. 3f) were not as elevated as those of p16+/+

CS. These data suggest that p16 depletion prevents COPD-
associated detrimental mediators from reaching pathological
levels and leading to the structural and functional alterations
associated with CS exposure.
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p16 deletion reduces CS-induced cytokine production in lungs.
Cytokines and growth factors typically associated with SASP and
inflammation were measured by Luminex assays in lungs from
RA- and CS-treated mice. SASP mediators, including IL-6,
CXCL-1 (chemokine ligand-1), IL-13, and CCL-2 (chemokine
ligand 2), were elevated in CS-treated p16+/+ mice (Fig. 4a). CS-

induced cytokine levels in p16−/− mice were comparable to those
of p16+/+ RA-exposed. Similarly, inflammatory mediators,
including RANTES, eotaxin, IP-10 (chemokine ligand 10), IL-5,
IL-9, and IL-17a were all upregulated with CS in p16+/+ lungs,
unlike in p16−/− lungs where cytokine induction was prevented
(Fig. 4b).
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Fig. 1 Immunohistochemical localization of p16 in human lungs. p16 (red) and SPC (yellow) staining in a healthy non-smoker, healthy smoker, and b COPD
human lungs. Arrowheads indicate co-localization of p16 and SPC (scale bar= 40 µm). c Percentage of p16+ (**p < 0.0001), d p16+ /SPC+ (**p <
0.0001), and e SPC+ cells in healthy and COPD lungs (*p= 0.0034). N= 3–11

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0532-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:307 | https://doi.org/10.1038/s42003-019-0532-1 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


p16 deletion reduces CS-induced senescence in AECIIs. In vivo
cell proliferation was assessed by EdU incorporation. Deleting
p16 significantly increased cell proliferation from 3.6% to 5.3%
(Fig. 5a, b, p < 0.0197). CS exposure led to a reduction in pro-
liferation in p16+/+ lungs from 3.6% to 2.7%, unlike the effect in
p16−/− lungs where proliferation was maintained (Fig. 5b). As
AECIIs are essential to homeostasis and regeneration of alveolar
epithelium, we assessed the number of these lung progenitors
using IHC for SPC+. Consistent with previous studies, we found
that p16+/+ lungs were 15–20% SPC+AECIIs throughout the
alveolar region (Fig. 5c)35. In RA conditions, deletion of p16
resulted in an increase in the percentage of SPC+ cells from
19.23% to 24.32% (Fig. 5c, RA p16+/+ vs. RA p16−/−). CS
exposure increased the numbers of SPC+ cells from 19.61% to
27.19%, supporting the observed protection from CS-mediated
alveolar structure destruction. Consistent with the proliferative
phenotype of p16−/− mice, the cell cycle inhibitor gene p21 was
dramatically reduced in p16−/− lungs compared with p16+/+

(Supplementary Fig. 2). In contrast, p16+/+ mice showed a

threefold increase in p21 upon CS exposure compared with RA,
strongly suggesting a role of senescence in CS-induced pulmonary
dysfunction observed in p16+/+ mice. To test whether AECIIs
from p16−/− lungs were indeed resistant to CS-induced senes-
cence, we isolated AECIIs from mouse lungs. The purity of iso-
lated AECIIs was >94%, as determined by epthelial cellular
adhesion molecule (EPCAM) and SPC flow cytometry (Fig. 5e,
f and Supplementary Fig. 3). AECIIs were cultured in a three-
dimensional system and treated with 5% cigarette smoke extract
(CSE). AECIIs in full media formed alveolar spheres demon-
strated by SPC staining in Fig. 5d, e. CSE-treated AECIIs formed
fewer spheres but were still viable (Fig. 5d). When exposed to
CSE, the percentage of senescent p16+/+ AECIIs increased as
assessed by flow β-gal activity (Fig. 5g). Deletion of p16 com-
pletely prevented the CSE-induced senescence of AECII (p16+/+

CS vs. p16−/− CS).

p16 deletion promotes proliferative signaling in the lung. To
further investigate the mechanism by which p16−/− mice are
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Fig. 2 Cigarette smoke promotes p16 promoter-driven luciferase activity and senescence. a Luciferase imaging of p16−/− lungs from mice exposed to RA or
CS for 4 months. b Average radiance measuring luciferase activity in p16−/− lungs (*p= 0.0114). c Luciferase staining in RA- and CS-treated lungs; images
were taken of alveolar space in p16−/− mice. Arrowheads indicate luciferase-positive AECII cells and arrows indicate macrophages (scale bar= 40 µm).
d Quantitative real-time PCR of p16 RNA (*p= 0.0307, **p= 0.0003) and e SA β-Gal activity measured in whole lung homogenates after 4 months of RA
or CS (*p= 0.0005). N, p16+/+ RA= 4–8, p16+/+ CS= 10–14, p16−/− RA= 4–7, and p16−/− CS= 12–14 mice
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resistant to CS-induced emphysema, we performed array-based
pathway-specific transcriptomic analysis. We found that mem-
bers of the insulin pathway were uniquely upregulated in p16−/−

lungs and altered further when treated with CS (Fig. 6a). To
validate the array analysis, we measured IGF1 mRNA and protein
by PCR and ELISA, respectively. Deletion of p16 increased IGF1
mRNA and protein (Fig. 6b RA). This translated to a 7.83-fold
increase in IGF1 protein in p16−/− lung compared with p16+/+.

When treated with CS smoke, p16−/− lungs maintained elevated
levels of IGF1 compared with p16+/+ (Fig. 6c). Discrepancies
between IGF1 RNA and protein are likely due to CS-induced
proteasome functions36. Phosphorylated insulin receptor (IR),
the receptor known to be activated by IGF1, was upregulated in
p16−/− lungs upon CS exposure, unlike in p16+/+ mice where it
decreased (Fig. 6d). Downstream mediators of the insulin/IGF1
pathway were also increased in p16−/− lungs compared with
p16+/+ mice, including Akt1, PPARγ, andMapK1 (Fig. 6e). These
data suggest that the structural and functional protection in
p16−/− mice is mediated by the pro-growth/anti-apoptotic IGF1
pathway. This led us to investigate this pathway in human COPD
lung samples obtained from patients undergoing lung resection
(and therefore predominantly GOLD IV, Supplementary

Table 2). Human IGF1 and Akt1 mRNA were both diminished in
COPD lung (Fig. 7a, b). As cellular damage from CS has been
shown to target Akt specifically37, we looked at Akt in p16−/−

lungs. Active Akt (pThr309) level was doubled in p16−/− lungs
and increased slightly with CS (Fig. 7c). Similarly, total Akt was
substantially elevated in p16−/− lungs and increased with CS
(Fig. 7d). Active Akt leads to an accumulation of cyclin D27,38, a
molecule necessary for S phase entry and the target of p16 to
induce senescence39. Cyclin D levels were comparable in p16−/−

and p16+/+ mice with RA; however, there was a much larger
increase in cyclin D in p16−/− compared with p16+/+ lungs upon
CS exposure, supporting the observation of enhanced cell pro-
liferation and regeneration in p16−/− lung (Fig. 7e, f, Supple-
mentary Fig. 4). To confirm that the cyclin D increase in p16−/−

lung was Akt-dependent, lung fibroblasts were isolated from
p16+/+ and p16−/− lungs, and treated with an Akt inhibitor
along with 10% CSE. Phase-contrast images (Fig. 7g) confirmed
that neither 10% CSE or the Akt inhibitor were toxic but instead
inhibited proliferation. CSE-induced cyclin D in p16+/+ fibro-
blasts and the Akt inhibitor inhibited CSE-induced cyclin D
(Fig. 7h). Cyclin D levels were sixfold higher in p16−/− fibroblasts
than in p16+/+ fibroblasts, and slightly increased with CSE. The
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Akt inhibitor entirely eliminated cyclin D (Fig. 7h), confirming
that the cyclin D upregulation in p16−/− lung fibroblasts was
Akt-dependent.

Discussion
COPD can be characterized as a disease of accelerated pulmonary
aging. COPD patients experience many of the hallmarks of aging,
including the deterioration of lung compliance, alveolar
destruction, inflammation, genetic instability, and cellular senes-
cence40. CS is recognized as a major contributor to COPD
pathologies, as it contains reactive oxygen species that cause
epithelial injury and inflammation throughout the central and
peripheral airways, and lung parenchyma41. CS-induced chronic
epithelial injury causes impaired tissue regeneration due to dys-
functional homeostatic balance between key tissue remodeling
mechanisms such as cellular proliferation and senescence6,37,42,43.
In the lung, stressed or damaged alveolar type I (AECI) cells
undergo apoptosis leading to attempted repair by AECII pro-
genitor cells within the alveoli, but over time with repeated
challenge this cell replacement system declines and the ability to
repair weakens44. To better understand the kinetics of CS-
induced senescence, we treated p16+/+ and p16−/− mice with CS
for 1 month and 2 months, respectively. At 1 month, we were able
to see a significant increase in senescence-associated β-gal activity
that slightly increased at 2 months vs. RA (Supplementary Fig. 5a,
p= 0.0183). Interestingly, in p16−/− mice, although β-gal activity
increases upon CS exposure at 1 month, the protective effects
become evident at 2 months, with decreased β-gal activity. In
addition to β-gal activity, we also examined the kinetics of p16
protein at earlier time points. Similar to β-gal activity, p16
expression increased gradually with continued exposure to CS
(Supplementary Fig. 5b).

Decreased lung compliance seen in COPD is caused by the
destruction of alveolar spaces induced by the breakdown of
extracellular proteins and exhausted progenitor cell compart-
ments. Blocking alveolar destruction and/or creating an

environment that facilitates alveolar regeneration could provide
an important approach to treating COPD and emphysema. In
this study, p16−/− pulmonary cells proliferated at a higher rate
than p16+/+ in normal air and in the presence of CS. Increased
proliferation resulted in a larger population of progenitor AECII
cells leading to limited alveolar destruction. Our study demon-
strates that promotion of cell hyperplasticity, upon deletion of a
cell cycle inhibitor, contributes to improved lung structure and
function, and may represent a valuable strategy to treat COPD
and emphysema.

In addition to the direct effects of p16 deletion on the increased
ability of the alveolar progenitor pool to proliferate, protection
from CS-induced pathological mediators appears to be conferred
as well, as evidenced by the attenuated induction of proteolytic
enzymes and inflammatory cytokines (Fig. 3e, f and Fig. 4).
Macrophages, recruited to the lung by the damage resulting from
CS exposure, are known to be a dominant source of ECM-
degrading enzymes such as MMP-1245,46. Supplementary Fig. 6a
and 6b show that exposure to CS leads to increased macrophage
numbers at the earliest time point evaluated (1 month) in both
p16+/+ and p16−/− lungs and the numbers remain similarly
elevated across all time points evaluated. Interestingly, although
MMP-12 expression was elevated in the wild-type mice with CS,
the p16−/− mice are protected from this increase (Supplementary
Fig. 6c), suggesting that the macrophages may not be the only
source of the MMP-12. As senescence is associated with an
activated cell phenotype, the reduced MMP-12 may be the result
a decreased secretory phenotype of the cells lacking p16.

Our study reveals that levels of pro-growth mediators IGF147

and Akt25 are diminished in COPD lung compared with normal
(Fig. 7a, b), suggesting that a defective IGF1 pathway mediates, at
least in part, the compromised tissue regeneration seen in COPD
lungs. IGF1 is induced by growth hormone in the pituitary and is
crucial in lung development and health48. Three IGF1 receptors
IGF1R, IGF2R, and IR activate PI3 kinase and downstream Akt
signaling to regulate metabolism, cell cycle, and apoptosis23,49. As
depicted in Fig. 8, we propose that oxidant-containing CS induces
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DNA damage that activates the p16 senescence pathway. Senes-
cent cells secrete SASP mediators, such as MMP-12, TGFβ1, and
IL-33, affecting the extracellular matrix homeostasis, which in
combination with the loss of regenerative capacity of senescent
AECII progenitors, leads to alveolar destruction and emphysema.
Inactivation of the p16 senescence pathway prevents CS-induced
lung emphysema by upregulation of the IGF1 pathway with
activation of Akt and cyclin D accumulation, promoting AECII
proliferation and regeneration.

A recent report using a chronic (6 months) model of CS-
induced COPD failed to find protective effects of p16 deletion50.
There are important differences in our approach that likely
account for the different outcomes. The p16−/− transgenic mice
used in their study have the entire Ink4a locus deleted, knocking
down p16 and downstream p19, another tumor suppressor. With
the entire locus knocked out, the mice spontaneously develop
tumors in the spleen and liver, limiting the lifespan of the mice.

The number of mice that survived CS exposure were extremely
limited (3 of the 11), making conclusions very challenging if not
impossible.

Considerable evidence exists linking p16 expression and a
multitude of pathologies associated with aging, including cardi-
ovascular disease51, osteoporosis20, diabetes52, age-related
frailty53, and pulmonary disorders10,43,54–57. The emerging
therapeutic approach of utilizing senolytics to remove senescent
cells may provide benefit by leading to a more pro-resolution/
regenerative cellular environment.

Methods
Animals. Wild-type B6(Cg)-Tyrc-2J/J (p16+/+) mice were obtained from The
Jackson Laboratory; p16Luc mice (Strain Code 01XBT -- B6.Cg-Cdkn2a tm3.1Nesh

Tyr c-2J/Nci) were obtained from the NCI mouse repository via Dr Norman
Sharpless (University of North Carolina School of Medicine). Mice were housed
and maintained in accordance with the Guide for Care and Use of Laboratory
Animals and under the American Association for the Accreditation of Laboratory
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Animal Care I accreditation. All protocols used in these studies were approved by
the Institutional Animal Care and Use Committee of MedImmune.

Cigarette smoke exposure. p16+/+ and p16−/− mice were exposed to cigarette
smoke in a SIU48 machine (PromechLab AB, Vintrie, Sweden; 3R4F cigarettes
from The Tobacco and Health Research Institute, University of Kentucky). Eight to
10-week-old female mice are exposed to 18 cigarettes twice a day, 5 days a week for
4 weeks, 8 weeks, and 16 weeks. The smoking period is 90 min per exposure with a
3 h rest period between exposures. In vivo Luciferase detection was performed on
isoflurane-anesthetized mice following intraperitoneally injecting D-luciferin sub-
strate (15 mg/ml in Dulbecco’s phosphate buffered saline (DPBS)).

Histology. Human COPD and normal samples were purchased from Avaden
BioSciences (Seattle, WA), Tissue Solutions (Glasgow, Scotland), and The National
Resource Center (Philadelphia, PA). The study was approved by the Temple
University Human Research Committee and all subjects provided their informed
consent. All companies maintain informed consent from patients and maintain
Institutional Review Board -approved protocols at every clinic with annual reviews.
Surfactant Protein C (SPC, 1/1000, Millipore Sigma, AB3786), CD31 (0.80 µg/ml,
Ventana ref #760–4378), and p16 (1 mg/ml, Ventana ref #705-4713) antibodies
were used to stain 3 normal and 13 COPD human sections. To quantify expression,
five random fields were analyzed per lung by Image J software.

Mouse lungs were perfused by instillation with Phosphate buffered saline (PBS)
and PBS/ optimal cutting temperature compound (Fisher Healthcare, 23-730-571)-
embedding solution, in order to ensure structural integrity, then fixed in 10%
formalin. Then the lungs were embedded in paraffin and cut into 5 μm sections
and Masson’s trichrome (MT) stain was performed using standard protocols.
Determination of mean linear intercept (MLI), collagen deposition, and lung area
were determined using Aperio Imagescope (Leica Biosystems, Buffalo Grove, IL)
and Image J software (NIH). Specifically, for MLI, five random fields per lung were
assessed on MT-stained lung sections. On average, 200 alveoli were recorded per
lung and 4–14 lungs were measured per group. Immunohistochemistry (IHC)
using antibodies against SPC (mouse 1/200, Millipore Sigma, AB3786), F4/80 (1/

1000 CST, 70076), and Luciferase (1/8000. Abcam, ab21176) was performed using
previously published protocols29,30. Briefly, slides were deparaffinized, then antigen
retrieval was conducted using 10 mM sodium citrate. TNB blocking reagent
(Perkin Elmer) was applied to reduce background signal as well as dilute primary
and secondary antibodies. Chromogenic IHC stain was performed as above, then
incubated with DAB Chromogen Solution (R&D Systems) and counterstained with
hematoxylin. EdU was injected 24 h intraperitoneally prior to killing; incorporated
EdU was imaged using the Click-it EdU Cell Proliferation assay (ThermoFisher,
Carlsbad CA) as per the manufacturer’s protocol.

AECII and fibroblast isolation. For alveolar epithelial cells (AECII) isolation, 8-
week-old mice were killed, then Dispase and PBS were rabidly instilled through a
cannula in the trachea. Following Dispase, 0.5 ml of warmed agarose was injected
into the lung then covered with ice for 2 min. Lungs were then removed and
incubated in 1 ml of Dispase for 45 min. After incubation, the cell suspension was
filtered through progressively smaller cell strainers and nylon gauze as described
previously31. Next, a discontinuous OptiPrep density gradient centrifugation step
(Axis-Shield Alere Technologies Oslo, Norway) followed by centrifugation (130 × g
for 8 min), then the cells were plated on 10 cm dishes that had been coated with
CD45 and CD32 the previous day. After 2 h of incubation, the AECIIs are not
bound to the plate and thus can be removed and cultured on top of 100% Matrigel
(BD biosciences) in Dulbecco’s modified Eagle’s medium (DMEM, ThermoFisher).
The cells that were bound to the 10 cm plate were collected and seeded in flasks
containing DMEM supplemented with 10% fetal bovine serum, giving rise to pure
fibroblast population after a week in culture.

Real-time PCR reaction. RNA was isolated from whole lung lobes using a Zymo
Research kit (R1065, Irvine, CA) according to their protocol. RNA was reverse
transcribed using iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA)
and TaqMan primers for indicated genes were purchased from ThermoFisher
Scientific (Carlsbad, CA), p16 (Mm00494449_m1), MMP-12 (Mm00500554_m1),
interleukin (IL)-33 (Mm00505403_m1), TGFβ1 (Mm01178820_m1), IGF1
(Mm00439560_m1), Akt1 (Mm01331626_m1), Pparg (Mm00440940_m1), Mapk1
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(Mm00442479_m1), human IGF1 (209542_x_at), and Akt1 (207163_s_at). QIA-
GEN PAMM030 RT4 Profiler PCR Arrays were used to determine the genes altered
in the insulin signaling pathway. Fast SYBR Green master max (ThermoFisher) was
used during the reaction. Qiagen’s Data Analysis software was used to analyze
results and construct a heatmap. All genes are normalized to five housekeeping
genes within the array. All raw sequencing data are submitted in Gene Expression
Omnibus under accession number (GSE133380). Human transcriptomic data were
collected as previously published32. The study was approved by the Temple Uni-
versity Human Research Committee and all subjects provided their informed
consent. Lung tissue from nine controls was also obtained from the National
Disease Research Interchange (Philadelphia, PA) from individuals who died from
non-respiratory causes under appropriate consent to use tissues for research pur-
poses. The COPD and control samples were anonymized prior to analysis. The
Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays were used per the
manufacturers’ protocols (Affymetrix, Santa Clara, CA) to evaluate gene expression
from the study subjects’ lung samples.

Cytokine measurement. The quantity of IL-33 (Millipore), MMP-12 (ab213878),
p16 (ab230131), and TGFβ1 (ab119557, Abcam, Cambridge, UK) in the mouse
lung was measured using enzyme-linked immunosorbent assay (ELISA) according
to the manufacturer’s protocol. SASP and inflammatory cytokines were included in
a 26 plex Luminex cytokine array (ThermoFisher, cat # EPX260-26088-901) and
performed according to the manufacturer’s protocol. Results are normalized to
total protein determined using BCA assay (Pierce).

Immunoblot analysis. Protein isolated from whole lungs were separated by 4–12%
gradient SDS-polyacrylamide gel electrophoresis (ThermoFisher) and transferred
to a polyvinylidene difluoride membrane using ThermoFisher’s Bolt system
according to their protocol. Membranes were then blocked with 5% bovine serum
albumin and immunoblotted with Total Akt (1/500, CST, 4691), pT308 Akt (1/250,
CST,13038), Cyclin D (1/100, Abcam, ab190564), and β-actin (1/5000, CST,4970).

Horseradish peroxidase secondary antibodies (1/1000) were applied for 1 h and
then developed with Amersham ECL Prime reagent (GE Healthcare). The bands
were detected using ImageQuant and densitometry was performed using Image J.

Measurement of SA-β-Gal activity. Senescence-associated β-galactosidase (β-gal)
activity was calculated according to the manufacturer’s protocol (Enzo Life Sci-
ences, Farmingdale, NY ENZ-KIT129-0120). Briefly, whole lung lysate was diluted
with 2× reaction buffer containing substrate. After 3 h of incubation at 37 °C, stop
solution was added to the reaction and the plate was read using a SpectraMax M5
plate reader at 360 nm (excitation) and 465 nm (emission). Activity is normalized
to total protein calculated using BCA assay. AECII senescence was measured by β-
gal substrate (C12FGD, ThermoFisher). Briefly, cells were treated with 33 µM
substrate for 2 h, then collected and detected by flow cytometry. C12FDG excites at
490 nm and emits at 514 nm.

Statistics and reproducibility. All values are displayed as mean ± SEM. All
comparisons made between two groups were made using Student’s t-test, when
comparisons were made between multiple groups two-way analysis of variance was
utilized. Statistical significance was defined as p < 0.05. All statistics were calculated
using either Excel or Prism Graphpad Software. All in-vitro experiments were
performed three to five times independently and in duplicate. Animals were allo-
cated and grouped randomly by blinded laboratory animal facility staff. All
attempts to reproduce the data were successful.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying main figures are shown in
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Supplementary Data 1. Full blots are shown in Supplementary Information. The data
used for the array-based pathway-specific transcriptomic analysis shown in Fig. 6a can be
downloaded from Supplementary Data 1. All raw sequencing data are submitted in Gene
Expression Omnibus (GEO) under accession number (GSE133380).
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