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Systematic discovery of conservation states for
single-nucleotide annotation of the human genome
Adriana Arneson1,2 & Jason Ernst 1,2,3,4,5,6

Comparative genomics sequence data is an important source of information for interpreting

genomes. Genome-wide annotations based on this data have largely focused on univariate

scores or binary elements of evolutionary constraint. Here we present a complementary

whole genome annotation approach, ConsHMM, which applies a multivariate hidden Markov

model to learn de novo ‘conservation states’ based on the combinatorial and spatial patterns

of which species align to and match a reference genome in a multiple species DNA sequence

alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate

the human genome at single nucleotide resolution into 100 conservation states. These states

have distinct enrichments for other genomic information including gene annotations, chro-

matin states, repeat families, and bases prioritized by various variant prioritization scores.

Constrained elements have distinct heritability partitioning enrichments depending on their

conservation state assignment. ConsHMM conservation states are a resource for analyzing

genomes and genetic variants.
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The large majority of phenotype-associated variants impli-
cated by genome-wide association studies (GWAS) are
non-coding1. Identifying and interpreting causal non-

coding variants is an important challenge2. Mapping of epige-
nomic data across different cell and tissue types has been one
approach for annotating and interpreting the non-coding regions
of genomes3–5. Using comparative genomics data to identify
regions of evolutionary constraint has been a complementary
approach for these purposes6–9.

In addition to providing evolutionary information, compara-
tive genomics data has the advantage of providing information at
single-nucleotide resolution. Furthermore, it is cell type agnostic
and thus informative even when the relevant cell or tissue type
has not been experimentally profiled10,11. The most commonly
used representations of this information are univariate scores and
binary elements of evolutionary constraint, which are called based
on a multiple species DNA sequence alignment and assumed
models of evolution and selection8,9,12–14. Supporting the
importance of these annotations, heritability analyses have
recently implicated evolutionary constrained elements as one of
the annotations most enriched for phenotype-associated var-
iants15. These scores and elements have also been highly infor-
mative features to integrative methods for prioritizing pathogenic
variants16–19. Further improvements to pathogenic coding variant
prioritization scores have been made by also using features
defined directly from a multiple sequence alignment20.

While useful, the representation of comparative genomics infor-
mation into univariate scores or binary elements is limited in the
amount of information it can convey about the underlying multiple
sequence alignment at a specific base. This limitation has become
more pronounced given the large number of species now available in
multi-species alignments such as a 100-way alignment to the human
genome21. Approaches have been developed to associate constrained
elements, regions, or individual bases with specific branches in a
phylogenetic tree22–28. While also useful, such directed approaches
are biased to only representing certain types of patterns present in
an alignment. An alternative approach learned patterns of different
classes of mutations between human and only one non-human
genome29, and was only applicable at a broad region level.

Analogous to the many sequenced genomes available for
comparative analysis, many different epigenomic datasets are
available for annotating genomes. Approaches that define ‘chro-
matin states’ based on combinatorial and spatial patterns in these
datasets have effectively summarized the information in them to
provide de novo genome annotations4,30–32. Inspired by the
success of these approaches, here we develop a method,
ConsHMM, that extends the ChromHMM31 method to system-
atically annotate genomes into ‘conservation states’ at single
nucleotide resolution given a multiple species DNA sequence
alignment. ConsHMM takes a relatively unbiased and flexible
modeling approach that does not explicitly assume a specific
phylogenetic relationship between species.

We applied ConsHMM to assign a conservation state to each
nucleotide of the human genome. The states capture distinct
enrichments for other genomic annotations such as gene annota-
tions, CpG islands, repeat families, chromatin states, genetic var-
iation, and bases prioritized by variant prioritization scores. The
ConsHMM conservation state annotations are a resource for
interpreting genomes and potential disease-associated variation,
which complement both existing conservation and epigenomic-
based annotations.

Results
Annotating the human genome into conservation states. We
developed an approach, ConsHMM, to annotate a genome into

conservation states at single nucleotide resolution based on a
multiple species DNA sequence alignment (Fig. 1a, Methods). At
each position in a reference genome, ConsHMM encodes one of
three observations for each non-reference species in the align-
ment: aligns with a nucleotide present that is the same as the
reference genome, different than the reference genome, or does
not have a nucleotide present at that position. ConsHMM then
probabilistically models the combinatorial and spatial patterns in
these observations using a multivariate hidden Markov model
(HMM). In each state of the HMM, ConsHMM assumes that the
probability of observing a specific combination of observations is
determined by a product of independent multinomial random
variables. The parameter values will generally differ between
states, and ConsHMM learns them from the input. After the
model is learned, ConsHMM assigns each nucleotide in the
reference genome to the state that had the maximum posterior
probability of generating the observations.

We applied ConsHMM to a 100-way Multiz vertebrate
alignment with the human genome as the reference genome21,33.
We focused our analysis here on a model learned using 100 states
to balance recovery of additional biological features and model
tractability (Fig. 2, Supplementary Figs. 1–8, Methods). We
verified that ConsHMM’s transition parameters have a smoothing
effect, which is consistent with applications of HMMs for
constrained element detection9,14, as the number of segments
increased from 889 million to 1.06 billion when using an
equivalent model except without transition information, though
most state assignments to individual bases were the same
(Supplementary Fig. 9, Methods). We illustrate ConsHMM
conservation state annotations at two loci, which shows that
bases with similar existing constraint annotations can have
different conservation state assignments corresponding to very
different underlying alignment patterns (Fig. 1b, Supplementary
Fig. 10).

Major groups of conservation states. Hierarchically clustering
the conservation states revealed eight notable subsets of states
(Fig. 2a, Supplementary Fig. 4, Supplementary Data 1, Methods).
The first subset was a single state (state 1) that showed high align
and match probabilities through essentially all the vertebrates.
The second subset showed relatively high align and match
probabilities for all mammals and some non-mammalian verte-
brates (states 2–4). The third subset showed relatively high align
and match probabilities for most if not all mammals, but not non-
mammalian vertebrates (states 5–22). The fourth subset showed
high align probabilities for many mammalian species, but had low
align probabilities for notable mammals such as mouse and rat
for many of the states in the group (states 23–46). The lower
mouse and rat probabilities relative to mammals that diverged
earlier is consistent with increased substitution rates for mouse
and rat7. The fifth subset showed high align probabilities for
many mammalian species, but did not show high match prob-
abilities (states 47–63). The sixth subset showed high align
probabilities for most primates, but not for other species (states
64–89). The seventh subset showed high align probabilities for at
most a subset of primates (states 90–99). The final subset was a
single state (state 100) that showed high align and match prob-
abilities for most primates and non-mammalian vertebrates, but
low probabilities for non-primate mammals, consistent with a
previous observation about the association of non-mammalian
vertebrates with likely alignment artifacts34.

Conservation states positional enrichments. Conservation states
showed strong and distinct positional enrichments relative to
annotated gene features including transcription start sites (TSS),
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transcription end sites (TES), and exon start and end sites, for
both protein coding genes and pseudogenes. Within 20 base pairs
(bp) of exon starts of protein coding genes, seven states (states
1–4, 7, 28, and 54) had at least 13-fold enrichment for some
position, which also held for exons in specific coding phases
(Fig. 3a, Supplementary Fig. 11a–c). These states were the only
states that had a majority of positions aligning for at least some
non-mammalian vertebrates, while still having a majority of
positions aligning for all primates (Fig. 2a, Supplementary
Data 1). Within exons, state 1 showed the strongest enrichment,
consistent with its high matching probabilities through all ver-
tebrates (Figs. 2b and 3a, b, Supplementary Fig. 11a–e). State 1
also had >40-fold enrichment at each of the three nucleotides
immediately upstream of exon starts and six nucleotides down-
stream of exon ends (Fig. 3b, Supplementary Fig. 11c), corre-
sponding to positions of the canonical 3′ and 5′ splice site
sequences respectively, and consistent with their high conserva-
tion throughout vertebrates35. Downstream of the start of
protein-coding exons, the enrichment profile for state 1 showed a
3-bp oscillation period, with a dip of enrichment at codon wobble
positions. States 3 and 54 showed an inverse oscillation pattern,
consistent with the states’ high align probabilities through many
vertebrates and lower match probabilities (Fig. 3a, Supplementary
Fig. 11a–c).

Around the TSS of protein coding genes, state 28, which had
moderate align and match probabilities for most vertebrates, had

the maximum enrichment (>30-fold) (Fig. 3c). Consistent with
this enrichment, state 28 also had a 32-fold enrichment for CpG
islands. However, state 28 was also 20-fold enriched for CpG
islands >2 kb away from any TSS of protein coding genes and 10-
fold enriched for TSS of protein coding genes >2 kb away from a
CpG island. This suggests that both of these features are
contributing to the association or the presence of unannotated
TSS overlapping CpG islands36. Relative to TES of protein coding
genes, enrichment of state 2, which had high align and match
probabilities for almost all vertebrates except for fish, peaked at
almost 12-fold (Supplementary Fig. 11f).

Relative to pseudogene exon starts and ends, states 100 and 82,
both associated with alignability to distal vertebrates without
many mammals closer to human (Fig. 2b, Supplementary Data 1),
had enrichments peaking at greater than 100 and 38-fold
respectively (Supplementary Fig. 11g, h). States 100 and 82 also
showed the greatest enrichment relative to TSS of pseudogenes
peaking at 184 and 68-fold respectively (Fig. 3d) and for TES of
pseudogenes peaking at 199 and 61-fold respectively (Supple-
mentary Fig. 11i).

Conservation states also had different positional enrichments
relative to instances of regulatory motifs, with the enrichment
varying at single nucleotide resolution (Fig. 3e, f, Methods)37. For
example, states 2 and 5 reached 1.8-fold enrichments at some
nucleotides in the POU5F1 and STAT motifs respectively, but had
lower enrichments (1.4–1.5) at other nucleotides with lower
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Fig. 1 Illustration of ConsHMM modeling approach. a The input to ConsHMM is a multiple species alignment, which is illustrated for a toy example
of 6 species aligned to the human sequence. At each position and for each species ConsHMM represents the information as one of three observations:
(1) aligns with a non-indel nucleotide matching the human sequence shown in blue, (2) aligns with a non-indel nucleotide not matching the human
sequence shown in yellow, or (3) does not align with a non-indel nucleotide shown in gray. b Illustration of conservation state assignments at the locus
chr22:25,024,640-25,024,812 in hg19. Only states assigned to at least one nucleotide in the locus are shown. Below the conservation state assignments is
a color encoding of the input multiple species alignment according to panel (a). The major clade of species as annotated on the UCSC genome browser21

are labeled and ordered based on divergence from human. Above the conservation state assignments are PhastCons constrained elements and scores and
PhlyoP constraint scores. This figure and Supplementary Fig. 10 together illustrate that positions of nucleotides that have the same status in terms of being
in a constrained element or not or have similar constraint scores can be assigned to different conservation states depending on the patterns in the
underlying multiple species alignment
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Fig. 2 Conservation state emission parameters learned by ConsHMM and enrichments for other genomic annotations. a Each row in the heatmap
corresponds to a conservation state. For each state and species, the left half of the heatmap gives the probability of aligning to the human sequence, which
is one minus the probability of the not aligning emission. Analogously, the right half of the heatmap gives the probability of the matching emission. Each
individual column corresponds to one species with the individual names displayed in Supplementary Fig. 5. For both halves, species are grouped by the
major clades and ordered based on the hg19.100way.nh phylogenetic tree from the UCSC genome browser, with species that diverged more recently
shown closer to the left21. The conservation states are ordered based on the results of applying hierarchical clustering and optimal leaf ordering54. The
states are divided into eight major groups based on cutting the dendrogram of the clustering. The full dendrogram and an explanation of the group
mnemonics is available in Supplementary Fig. 4. The groups are indicated by color bars on the left hand side and a white row between them. Transition
parameters between states of the model can be found in Supplementary Fig. 6. b The columns of the heatmap indicate the relative enrichments of
conservation states for external genomic annotations (Methods). For each column, the enrichments were normalized to a [0,1] range by subtracting the
minimum value of the column and dividing by the range and colored based on the indicated scale on the right. Values for these enrichments and additional
enrichments can be found in Supplementary Fig. 8 and enrichments for individual repeat classes and families can be found in Supplementary Fig. 14
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information content. States 55–57, which had high align
probabilities for most mammals and low match probabilities
even for most primates, peaked in enrichment at the CG
dinucleotide in the center of the STATmotif, consistent with their
genome-wide CG dinucleotides enrichments (Fig. 3e, Supple-
mentary Fig. 12).

Conservation state enrichments for different gene classes. We
next investigated conservation states enrichments for different
gene classes. For each state, we determined the top 5% of gene
promoter regions overlapping the state, which controls for dif-
ferent state preferences in general for promoters. For those cor-
responding genes, we evaluated Gene Ontology (GO)
enrichments, which revealed distinct enrichment patterns
(Fig. 4b, Supplementary Fig. 13, Methods). For example, states
1–3, which all had high alignability through at least birds, had
substantial differences in their gene preferences. Out of these
states, state 1 and state 3, which had high matching through all
vertebrates and mainly mammals respectively, were the only ones
enriched for nucleosomes (p < 10−41; 10.5-fold) and sensory
perception of smell genes (p < 10−300; 15.5-fold) respectively.
State 2, which had high match probabilities through all verte-
brates except fish, was the state most enriched for cellular
developmental processes (p < 10−30; 1.8-fold), which were not
enriched in state 3. States with overall lower align or match
probabilities also had notable enrichments. For example, state 89,
which had moderate alignability for most non-primate mammals,
but low matching even for primates, was the state most enriched

for antigen binding (p < 10−14; 6.7-fold) consistent with antigen
binding being associated with many species, but fast evolving38.

Conservation state enrichments for repeat elements. The con-
servation state enrichments for bases in repeat elements ranged
widely from twofold enrichment to 133-fold depletion (Fig. 2b,
Supplementary Fig. 8)21,39. Of the 25 states in which only primate
species had a majority of positions aligning, all but states 89 and
96 had an enrichment of 1.55 or greater for repeat elements, while
the other 75 states all had a lower enrichment or were depleted
(Supplementary Data 1). Neither state 89 nor 96 enriched for
repeat elements. As noted above, state 89 is associated with fast
evolving bases shared with some non-primate mammals, while
state 96 is associated with assembly gaps (Supplementary Fig. 8).

Individual conservation states had distinct enrichments for
different repeat classes (Supplementary Fig. 14). For instance,
different states had maximal enrichments for the DNA, LINE,
LTR, and SINE repeat classes and families (Fig. 4d). State 74,
which had high align and match probabilities for all primates, had
the maximal enrichment of 5.6-fold for DNA repeats, while the
enrichment for the other three classes were between 1.0 and 1.8-
fold. State 86, which lacked alignability of a subset of primates,
had the maximal of 3.0-fold enrichment for LINE repeats, while
the enrichment for the other classes were between 0.6 and 1.6-
fold. States 76 and 77 had maximal enrichments of 3.3 and 4.5-
fold for LTR and SINE respectively compared to 1.1 and 2.1-fold
for SINE and LTR respectively. States 76 and 77 both had high
align probabilities through primates up to and including squirrel
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monkey, with the exception that state 77 lacked alignability to
gorilla. Despite these subtle differences in alignment probabilities,
these states had substantial differences in their repeat
enrichments.

Relationship of conservation states to chromatin states. To
understand the relationship of conservation states to chromatin
states we determined the median enrichment of each conserva-
tion state for 25-chromatin states defined across 127 samples
using imputed data5,40 (Fig. 4a, Supplementary Fig. 15). Eleven

conservation states were maximally enriched for at least one of
the chromatin states. Conservation state 28 had the greatest
enrichment for any chromatin state, with a 35-fold enrichment
for an active promoter chromatin state, and was maximally
enriched for four other promoter associated chromatin states.
Conservation state 1 was maximally enriched (3.8–8.7-fold) for
five chromatin states associated with transcribed and exonic
regions40, consistent with its maximal enrichment for annotated
exons. Conservation state 2 was maximally enriched (3.1–4.7-
fold) for five enhancer associated chromatin states, while
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Fig. 4 Conservation states enrichment for chromatin states, GO terms, DHS and repeat elements. a Median fold enrichment of conservation states (rows)
for one of 25 chromatin states from a previously defined chromatin state model defined across 127 samples of diverse cell and tissue types (columns)40.
Only conservation states that had the maximum value for at least one chromatin state are shown, and those values are boxed. See Supplementary Fig. 15
for the enrichments of all conservation states. b –log10 p-value (uncorrected) of the conservation states (rows) for the GO term (columns) where each
conservation state is associated with its top 5% genes based on promoter regions (Methods). Only GO terms which were the most significantly enriched
term for some conservation state among terms the state was maximally significant for are shown, restricted to the top 10 terms based on the significance
of the enrichment. Only conservation states that had the most significant enrichment for one of the displayed GO terms are shown, with the maximal
enrichments boxed. The full set of conservation states with additional GO terms are in Supplementary Fig. 13. c Relative enrichments of conservation states
for DHS across cell and tissue types. Only conservation states with at least a twofold enrichment in one sample considered are shown. Enrichment values
were log2 transformed and then row normalized by subtracting the mean (right heatmap) and dividing by the standard deviation. States and experiments
were then hierarchically clustered and revealed two major state clusters. In the top cluster conservation states showed the greatest enrichment for
experiments in which the DHS also strongly enriched for CpG islands (top heatmap). In the bottom cluster conservation states had the strongest relative
preference for fetal related samples or HUVEC. d Fold enrichment of conservation states with the maximal enrichment for LINE, SINE, LTR or DNA repeats
next to the state align probabilities for primates. These states all had low align probabilities outside of primates, but their differences among primates
corresponded to substantial differences in repeat enrichments28
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conservation state 5 had high enrichments for these states and
was maximally enriched (2.5-fold) for a chromatin state primarily
associated with just signal of DNase I hypersensitive sites (DHS).
These chromatin state enrichments highlight the multi-
dimensional information that conservation states capture.

Conservation states and cell type specific DHS. We next
investigated whether different conservation states capture distinct
enrichment patterns for DHS across cell and tissue types. We
analyzed DHS from the 53 samples considered above for which
maps of experimentally observed DHS were available5. We hier-
archically clustered the row normalized enrichment patterns of the
21 conservation states that exhibited at least twofold enrichment in
one or more samples, revealing two major clusters of states
(Fig. 4c). One major cluster contained 14 states, with ten of the
states having maximum enrichment for a fetal sample and the
remaining four states having maximum enrichment for the cell
type Human Umbilical Vein Endothelial Cells (HUVEC). The
second major cluster consisted of seven states, all of which
were enriched for CpG islands (Fig. 2b, Supplementary Fig. 8). The
samples for which DHS had the greatest enrichments for states in
this cluster also had the greatest enrichment for CpG islands
(Fig. 4c, Methods), but were biologically diverse in the type of cell
or tissue and could potentially reflect technical differences.

Conservation states’ relationship to constraint annotations. We
next investigated the relationship of the conservation state
annotations with constrained element sets from four methods
(GERP++, SiPhy-omega, SiPhy-pi, and PhastCons) and uni-
variate scores of evolutionary constraint from three methods
(GERP++, PhastCons, and PhyloP). The PhastCons and PhyloP
constraint annotations were defined on the same alignment as the
conservation states. The available GERP++, SiPhy-omega, and
SiPhy-pi constraint annotations were defined from different
versions of Multiz alignments and only considered mammals.

States 1–5 all had >9.0-fold enrichment for each constrained
element set and high mean constraint scores consistent with their
high matching probabilities across all mammals (Fig. 2b,
Supplementary Fig. 16). States 54 and 100 also had >6.0-fold
enrichment for at least one constrained element set. State 100,
which had high aligning and matching primarily in non-
mammalian vertebrates, had 15-fold enrichment for PhastCons
elements and high mean PhastCons and PhyloP scores, consistent
with these scores being defined using non-mammalian verte-
brates. State 54, which had high alignability through most
vertebrates and low matching outside primates, enriched 4 to 7-
fold for the constrained element sets, but did not show high mean
base-wise scores particularly for the GERP++ and PhyloP scores,
consistent with its enrichments for codon wobble positions. More
generally, constrained element sets, except for PhastCons, did not
show biologically relevant variation at single nucleotide resolution
in their enrichments around regulatory motifs and exon start and
ends as the conservation state annotations did (Fig. 3a, e, f,
Supplementary Fig. 17).

We compared biologically relevant information in conservation
state and constraint annotations using established genome
annotations. We evaluated their ability to recover annotated
TSS, TES, and exon starts and ends separately for protein coding
and pseudogenes (Fig. 5a–c, Supplementary Fig. 18). In almost all
cases the conservation states provided greater information for
recovering annotated gene features. The only exceptions were that
PhyloP scores had higher precision at low recall levels for protein
coding exon starts and ends, and that SiPhy-pi elements had
slightly higher precision for TSS of protein coding genes at their
one recall point.

We also evaluated recovering bases covered by DHS (Supple-
mentary Figs. 19 and 20, Methods). When comparing DHS
recovery from 53 samples in aggregate, the conservation states
had greater precision at the same recall level than all the
constraint scores and PhastCons elements, both genome-wide
and for non-exonic bases. The precision for GERP++, SiPhy-pi
and SiPhy-omega elements was higher at their single recall point
(Supplementary Fig. 19). Similar results were seen for regions
distal to TSS, except for some scores at low recall levels in the
non-exonic comparison. The higher precision for GERP++,
SiPhy-pi and SiPhy-omega elements in the aggregate evaluation
over constraint scores, PhastCons elements, and conservation
states might be related to the coarser resolution at which they
were defined and also did not hold for all cell types
(Supplementary Figs. 17 and 20).

Conservation states also had complementary information
about DHS to constrained elements, as constrained element
enrichments for DHS varied substantially depending on their
conservation state (Fig. 5d, Supplementary Figs. 21 and 22). For
example, PhastCons elements’ bases in 35 states were depleted for
Fetal Brain DHS in non-exonic regions, covering 10% of
PhastCons bases, while PhastCons elements’ bases in 12 states
bases were enriched over fivefold, covering 37% of PhastCons
bases. Additionally, bases not in a constrained element in some
states had greater enrichments for DHS than bases in a
constrained element in other states. Constrained elements also
offered additional information, as in most cases bases that were in
a constrained element in a given conservation state had greater
enrichment for DHS than those that were not.

We also analyzed conservation state enrichments for previously
defined subsets of PhastCons constrained non-exonic elements
(CNEEs) based on a directed phylogenetic approach that assigned
each element to a phylogenetic branch point of origin22

(Supplementary Fig. 23a). Bases in elements assigned to the
Tetrapod clade branch point of origin had a 37-fold enrichment
for state 2, which had high aligning and matching through all
vertebrates except fish, but also 51-fold enrichment for state 100,
associated with likely alignment artifacts, demonstrating the
heterogeneous nature of assignments from directed phylogenetic
partitioning. We also evaluated the subsets of CNEEs enrichment
for CpG islands within non-exonic regions (Supplementary
Fig. 23c). The most enriched subset of CNEEs was 6.7-fold
enriched covering 1.9% of non-exonic CpG islands. In compar-
ison, conservation state 28 had a 37.6-fold enrichment, while
covering 12.8% of such bases. A similar pattern of enrichments
was observed when only considering CNEEs overlapping a
PhastCons element called on the same alignment as the
conservation states (Supplementary Fig. 23b, d). These results
highlight that the conservation states capture additional biological
information compared to directed phylogenetic based
approaches.

Conservation states enrichments for prioritized variants. Var-
ious scores have been proposed to prioritize variants, including
based on inter- or intra-species constraint or integration of
diverse genomic annotations. However, a systematic under-
standing of different types of bases these scores prioritize is
generally lacking. To address this, we analyzed conservation
states’ genome-wide enrichments of top 1, 5, and 10% prioritized
bases by 12-different scores (CADD (v1.4), CDTS, DANN, Eigen,
Eigen-PC, FATHMM-XF, FIRE, fitCons, GERP++, PhastCons,
PhyloP, and REMM). We also analyzed the enrichment specifi-
cally in non-coding regions for those scores and two non-coding
only scores, LINSIGHT and FunSeq2 (Fig. 6a, b, Supplementary
Figs. 24–27)8,9,13,16,18,19,41–47.
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Bases prioritized by most scores had strong enrichments for
specific conservation states. For example, state 1, which had high
align and match probabilities across all vertebrates, had a 77.2-
fold enrichment for CADD top 1% prioritized bases genome-
wide, covering 46% of such bases. Despite the CADD score being
based in part on many non-conservation annotations, this
enrichment was greater than that observed for any inter-species
constraint score. There was a general consistency in states with
higher enrichment across the various measures. For example, in
top 1% bases for the genome-wide analysis, only 13 states were
among the top five most enriched by at least one of the 12 scores.
Nine of these 13 states (states 1–5, 7, 28, 54, 100) were in the top
five for at least three scores. However, there were also important
enrichment differences between scores for these states, and in
several cases a single score prioritized other states.

There was substantial disagreement among the scores of the
relative importance of states 2 and 28, the most enhancer and

promoter enriched states respectively, particularly in non-coding
regions. For example, state 2 was the second or third most
enriched state (24.9–47.2-fold) for CADD, Eigen, FATHMM-XF,
GERP++, LINSIGHT, PhastCons, PhyloP, and REMM top 1%
prioritized bases in non-coding regions. On the other hand, state
28 had lower enrichments (0.3 to 6.2-fold) and was not one of the
top five most enriched states for any of those scores. In contrast,
for CDTS, DANN, and Eigen-PC, state 28 was the first or second
most enriched state (7.6–18.6-fold), while state 2 had lower
enrichments (0.8–2.1-fold) and was not among the top five most
enriched states.

There was a large disagreement in the state enrichments between
variants prioritized by DANN and CADD for both the current and
original versions of CADD (Supplementary Figs. 25–27). This was
despite DANN using the same framework as CADD except using
a deep neural network43. Surprisingly, for top 1% non-coding
variants, DANN showed a depletion for state 2, which had high
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Fig. 5 Relationship of conservation states with constrained elements and scores. Precision-recall plots for recovery of a TSS of protein coding genes, b TES
of protein coding genes, and c the start of exons of protein coding genes. Recovery based on ordering ConsHMM conservation states for their enrichment
for the target set in the training data, then cumulatively adding the states in that ranked order and evaluating on the test data is shown with a series of blue
dots (Methods). The first few conservation states added are labeled with their state number. Recovery based on ranking from highest to lowest value of
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target set in the training data, then cumulatively adding bins in that ranked order and evaluating on the test data is shown in a series of dots of the same
color as the continuous line corresponding to the score. Recovery of target test bases by a constrained element set is shown with a single dot for each
constrained element set. See Supplementary Figs. 18–20 for plots based on additional targets. d The graph shows the fold enrichment for Fetal Brain DHS5

within the non-exonic portion of each conservation state, separately for those bases in a PhastCons constrained element (pink) and bases not in such an
element (blue). Enrichments within constrained elements varied substantially depending on the conservation state. For a given conservation state, bases in
a constrained element had greater enrichments than bases not in a constrained element, illustrating complementary information of conservation states and
constrained elements. See Supplementary Fig. 21 for graphs based on different element sets or DHS data and Supplementary Fig. 22 for these enrichments
plotted against the size of the set
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matching probabilities through all vertebrates except fish, while
having over four-fold enrichment for multiple states that showed
high alignment or matching probabilities for only subsets of
primates.

There were also notable enrichment differences for other states
for which the biological importance was less apparent. For
example, state 100, associated with likely alignment artifacts, in
the top 1% non-coding region analysis had enrichments in the
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Fig. 6 Conservation states’ association with human genetic variation. a Fold enrichments of bases ranked in the top 1% of the non-coding genome by 14
variant prioritization scores. Only states among the top five most enriched states for at least one score are shown. The enrichment of the top five ranking
states for each score is colored according to their ranking. The table provides a summary of the align and match probabilities and notable enrichments of
each state. The ‘Distal align’ and ‘Distal match’ columns contain the species most distal to human that has an alignment and matching probability in the
state >0.5, respectively. The ‘Proximal not align’ and ‘Proximal not match’ columns contain the species closest to human that has an alignment and
matching probability in the state lower than 0.5, respectively. The species are colored by the major clades indicated below. An expanded version including
all states is available in Supplementary Data 1. b Enrichments of bases ranked in the top 1% genome-wide by 12 variant prioritization scores. The criteria for
selecting states to display and coloring enrichments was the same as panel (a). Enrichments for prioritized bases at additional thresholds and for all states
both genome-wide and for the non-coding genome are in Supplementary Figs. 24–27. c The log2 fold enrichment of each state for common SNPs (pink)
and GWAS catalog variants relative to common SNPs (blue). d The representation of state emission parameters from Fig. 2a for the subset of states
highlighted in panel (c). e Heritability partitioning enrichments from the method of ref. 15 applied on two disjoint subsets of bases in PhastCons elements,
with eight phenotypes previously analyzed with heritability partitioning in the context of a baseline annotation set (Methods). The two sets are PhastCons
elements overlapping one of the seven conservation states showing the greatest enrichment for DHS in its non-exonic portion (states 1–5, 8, and 28)
covering 51.9% of PhastCons bases (pink) and bases in PhastCons elements overlapping the remaining 93 states covering 48.1% of PhastCons bases
(blue). Error bars represent standard errors around the enrichment estimate using jackknife resampling
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range of 14.7 to 34.5-fold for FATHMM-XF, fitCons, PhastCons
and PhyloP prioritized bases, while the enrichment for all other
scores was at most 2.0-fold. Another example was state 54, which
associated with wobble position within codons, and had a 21.1
fold enrichment in the top 1% genome-wide analysis for fitCons
prioritized bases and was also the third most enriched state for
CDTS, Eigen-PC, and FIRE, while depleting for GERP++ and
REMM prioritized bases. These results highlight how the
conservation states enable recognizing and characterizing distinct
subsets of nucleotides that are selectively captured by different
variant prioritization scores.

Conservation states and human genetic variation. Previous
analyses have found a depletion of human genetic variation in
evolutionarily constrained elements7. Consistent with that, the
greatest depletion (3.3-fold) of common single nucleotide poly-
morphisms (SNPs) is in state 1, the state most enriched for
constrained elements, while states 55–57 and 87–89 had the
greatest enrichments for common SNPs (5–8-fold). These six
states all had high align, but low match probabilities for most
primates and had the greatest enrichment of CG dinucleotides
(Supplementary Fig. 12). We observed similar patterns of
enrichments and depletions for variants identified from whole
genome sequencing47, with their magnitude increasing with
minor allele frequency (Supplementary Fig. 28).

States had opposite enrichment patterns for GWAS catalog
variants48 relative to the background of common SNPs (Fig. 6c, d).
Using this background, state 1 was most enriched for GWAS
catalog variants, consistent with constrained elements enriching for
GWAS variants7. States 55–57 and 87–89 showed the greatest
depletion, suggesting that a variant in one of these states is less
likely to be phenotypically associated.

We also applied the INSIGHT49 model to obtain its estimates
of the density of positive selection events and percentage of bases
under selection within human populations in each conservation
state (Supplementary Fig. 29). States 54–57 and 87–89 all had
substantial density for positive selection event estimates.
INSIGHT also estimated that 77% of states had more than 75%
bases under-selection, while 13% had <50% bases under selection.
Similar estimates held when restricting to bases in PhastCons
elements and not in PhastCons elements (Supplementary Fig. 29).
However, instead of a majority of states actually having a high
percentage of bases under selection, this likely reflects that there is
a relatively direct relationship between human variation informa-
tion contained by the conservation states and INSIGHT’s use of
such information to quantify selection.

Conservation states and heritability partitioning. Previous
analyses have suggested strong enrichments of constrained ele-
ments and DHS for phenotype heritability15,50. Given the dif-
ferences in DHS enrichments of constrained elements across
conservation states, we investigated whether constrained elements
in conservation states most enriched for DHS had different
phenotype heritability than those in other states. Specifically, we
ranked the conservation states in descending order of their
median enrichment within non-exonic bases for DHS from 123
experiments (Fig. 2b, Methods)3. We then partitioned bases in
PhastCons elements into two almost equal size sets based on
whether they overlapped a top seven-ranked conservation state
(states 1–5, 8, 28). We computed the heritability for the two sets
for eight phenotypes in the context of baseline annotations that
include DHS15. For seven of the phenotypes, bases in constrained
elements overlapping the top seven states had greater enrichment
than those in the other states, often substantially so (Fig. 6e).

These results suggest possible additional value of conservation
states for isolating disease-associated variants.

Discussion
We introduced the ConsHMM method for genome annotation
and used it to annotate the human genome at single nucleotide
resolution into one of 100 conservation states. ConsHMM learns
conservation states de novo using a multivariate HMM based on
the combinatorial and spatial patterns of which species align and
match a reference genome in a multi-species DNA sequence
alignment. Conservation states had substantial enrichments for a
wide range of other genomic annotations, functional genomics
data, and human variation data.

ConsHMM differs from other commonly used comparative
genomics based annotation approaches in several respects. One
difference is that it takes an unsupervised approach that does not
explicitly use a phylogenetic tree in its modeling. This leads to
relatively unbiased, flexible and interpretable models. Despite not
explicitly using a phylogenetic tree, many state patterns dis-
covered are consistent with commonly assumed phylogenetic
relationships of the species. While states’ parameters often
decreased with divergence time from human, there were some
exceptions. Some of these exceptions corresponded to missing
specific sub-clades of species, particularly those with long branch
lengths. For example, in some states mouse and rat were absent,
while more distally diverged mammals were present. Other states
isolated likely artifacts in alignments that heavily enriched for
pseudogenes. A second difference is that ConsHMM explicitly
differentiates non-aligning bases from aligning non-matching
bases, which allowed it, for example, to identify states such as
those associated with third codon positions. A third difference
between the ConsHMM annotations and standard constraint
measures is that the ConsHMM annotations are defined directly
relative to the variant present in the genome being annotated.
When applying ConsHMM to annotate the human genome, a
mutation unique to human would be expected to have a much
larger effect on the ConsHMM annotations than a mutation
unique to a single other species. This would not in general be
expected for constraint measures that treat the target genome for
annotation in the same way as other genomes in an alignment.
An interesting future direction would be to produce and analyze
individual specific ConsHMM annotations.

ConsHMM annotations are complementary to existing binary
elements and scores of evolutionary constraint based on phylo-
genetic modeling. Both bases within and outside of constrained
elements are heterogeneous in their assigned conservation states.
ConsHMM annotations provide additional information about the
conservation patterns at each base. In many cases, the con-
servation states had greater information than constraint scores or
elements for predicting external annotations. Notably,
ConsHMM identified a conservation state strongly enriched for
TSS and CpG islands that was not well captured by phylogenetic
modeling approaches. For other annotations, such as DHS, the
relative information depended on the constrained element set or
score being compared. Importantly, the DHS information pro-
vided by the states was complementary to information in the
constrained elements. Furthermore, we observed that bases in
constrained elements showed substantially different enrichments
for phenotype-associated heritability, depending on their con-
servation state. The conservation state annotations also provide a
useful framework for understanding the types of bases prioritized
by constraint scores or other types of variant prioritization scores,
since the corresponding conservation patterns are defined sys-
tematically in an unbiased way, at single nucleotide resolution
and capture a diverse set of biological features.
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ConsHMM is both inspired by, and provides complementary
information to, ChromHMM. While the annotations produced
by the two methods have fundamental differences, they also
exhibited substantial cross-enrichments. In general, conservation
states have the advantages of providing information at single
nucleotide resolution and about bases active in cell types that
have not been experimentally profiled, while chromatin states
have the advantage of directly providing cell type specific
information.

We expect many applications for the ConsHMM method and
annotations. The ConsHMM method can be readily applied to
alignments to other reference species or alignments by other
methods26. The ConsHMM annotations are a resource to inter-
pret other genomic datasets or variant prioritization scores. A
possible avenue for future work would be to integrate the con-
servation states with other genomic annotations to produce a
variant prioritization score. An effective strategy for that would
need to be powered to retain the rich information in the con-
servation state annotations, and would also need to be based on a
principle sufficiently independent from how the conservation
states are defined to enable a meaningful integration and prior-
itization. This work represents a step towards improving whole
genome annotations, including of non-coding regions and var-
iants, which will be of continued importance towards under-
standing disease.

Methods
Modeling conservation states with ConsHMM. ConsHMM takes as input an N-
way multi-species sequence alignment to a designated reference genome. For each
base in the reference genome, i, ConsHMM encodes information from the multiple
species alignment into a vector, vi, of length N-1. An element of the vector, vi,j,
corresponds to one of three possible observation for a non-reference species j at
position i. The three possible observations are: (1) the non-reference species aligns
with a non-indel nucleotide symbol present matching the reference nucleotide, (2)
the non-reference species aligns with a non-indel nucleotide symbol present, but
does not match the reference nucleotide, or (3) the non-reference species does not
align with a non-indel nucleotide symbol present.

ConsHMM assumes that these observations are generated from a multivariate
HMM where the emission parameters are assumed to be generated by a product of
independent multinomial random variables, corresponding to each non-reference
species in the alignment. Formally, the model is defined based on a fixed number of
states K, and number of species in the multiple sequence alignment N. For each
state k (k= 1, …, K), non-reference species j (j= 1, …, N−1) and possible
observation m (m= 1, 2, or 3 as described above), there is an emission parameter:
pk,j,m corresponding to the probability in state k for species j of having observationm.
For each possible observationm, let Im(vi,j)= 1 if vi,j=m, and 0 otherwise. Let bt,u be
a parameter for the probability of transitioning from state t to state u. Let c ∈ C
denote a chromosome, where C is the set of all chromosomes in the reference
genome of the multiple species alignment, and let Lc be the number of bases on
chromosome c. Let ak (k= 1, …, K) be a parameter for the probability of the first
base on a chromosome being in state k. Let sc ∈ Sc be a hidden state sequence on
chromosome c and Sc be the set of all such possible state sequences. Let ch denote
position h on chromosome c. Let sch denote the hidden state at position ch for state
sequence sc.

We learn a setting of the model parameters that aims to optimize
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Once a model is learned, each nucleotide is assigned to the state with maximum
posterior probability. To conduct the model learning and state assignments,
ConsHMM calls an extended version of the ChromHMM31 software, originally
designed to solve an analogous problem of annotating a genome into chromatin
states based on combinatorial and spatial patterns of the presence of different
chromatin marks. The modeling in ConsHMM differs from the typical use of
ChromHMM in three main respects: (1) the observation for each feature comes
from a three-way multinomial distribution as opposed to a Bernoulli distribution,
(2) it is applied at single nucleotide resolution as opposed to 200-bp resolution, (3)
it is applied with more features than ChromHMMmodels have used in the past. (2)
and (3) raise scalability issues in terms of time and memory, which we addressed in
an updated version of ChromHMM (see below).

To apply ChromHMM in the context of three-way multinomial distributions,
ConsHMM represents the three possible observations at position i for a species j
with two binary variables, yij and zij, corresponding to aligning and matching the
reference genome respectively. yij has the value of 1 if the other species aligns to the

reference with a non-indel nucleotide and 0 otherwise. zij has the value of 1 if the
other species has the same nucleotide as the reference sequence and has a value of 0
if the other species has a different nucleotide present than the reference. In the case
in which yij= 0, there is no nucleotide to compare to the reference and that value
of the zij variable is considered missing (encoded with a ‘2’ for ChromHMM). If the
value of an observed variable is missing, ChromHMM excludes the Bernoulli
random variable corresponding to the observation from the emission distribution
calculation at that position. For each state k and species j, ChromHMM thus learns
two parameters, fk,j and gk,j. fk,j corresponds to the probability that at a given
position in state k, species j aligns to the reference genome with a non-indel
nucleotide, that is P(yi,j= 1| si= k). gk,j corresponds to the probability that at a
given position in state k, species j matches the reference genome conditioned on
species j aligning with a non-indel nucleotide, that is P(zi,j= 1| yi,j= 1 and si=k).
This representation is equivalent to the three-way multinomial distribution, (pk,j,1,
pk,j,2, pk,j,3) described above where pk,j,1= P(yi,j= 1, zi,j= 1 | si= k), pk,j,2= P(yi,j=
1, zi,j= 0 | si= k), and pk,j,3= P(yij= 0 | si= k), since pk,j,1= fk,j×gk,j, pk,j,2= fk,j × (1-
gk,j), and pk,j,3= 1 – fk,j.

Multiple species sequence alignment choice. ConsHMM can be applied to any
multiple species sequence alignment which is available in multiple alignment
format (MAF) or which can be converted into this format. For the results presented
here we applied it to the 100-way Multiz vertebrate alignment with human (hg19)
as the reference genome21,33 for chromosomes 1-22, X, and Y.

Scaling-up ConsHMM to single base resolution. Since for our application
ConsHMM needs to run ChromHMM at single base resolution (‘-b 1’ flag) with
198 features after our binary encoding (two for each non-human species in the 100-
way alignment), we had to address scalability issues in terms of both memory and
time. To address the memory issue we modified ChromHMM to support only
loading in main memory input for chromosome files it is actively processing, as
previously ChromHMM would only support loading all data into main memory
upfront. This option can now be accessed in ChromHMM through the ‘-lowmem’
flag. To reduce the time required we used 12-parallel processors (‘-p 12’ flag) and
we trained on a different random subset of the human genome on each iteration of
the Baum-Welch algorithm. We divided each chromosome into 200 kb segments
(with the exception of the last segment of each chromosome which was less than
this) in order to form random subsets of the human genome. We modified
ChromHMM to allow training for each iteration on a randomly selected subset of
150 of these segments (‘-n 150’ flag), corresponding to 30MB per iteration. We ran
this for 200 iterations by adding the ‘-d -1’ flag, which removed one of
ChromHMM’s default stopping criterion based on computed likelihood change on
the sampled data, since the likelihood is now expected to both increase and
decrease between iterations as different segments are sampled. These new options
were included in version 1.13 of ChromHMM. The unique code to ConsHMM v1.0
is written in Python. The code of ConsHMM shared with ChromHMM is written
in Java and included with ConsHMM.

Generating genome-wide annotations. After ConsHMM learned a state model,
we used it to segment and annotate the human genome at base-pair resolution into
conservation states. Each base in the human genome is classified into the state
with the highest posterior probability. ConsHMM does this by running the
MakeSegmentation command of ChromHMM. Due to computational constraints,
the segmentation could not be generated for entire chromosomes at once. Instead,
we ran MakeSegmentation on the same 200 kb partitioning made for learning
the model. We then merged the resulting files together using ConsHMM’s
mergeSegmentation.py command with slice size parameter set to 200,000
(‘-s 200000’ flag) and the number of states parameter set to 100 (‘-n 100’ flag).

Computing enrichments for external annotations. All overlap enrichments for
external annotations were computed using the ChromHMM OverlapEnrichment
command at single base resolution (‘-b 1’ flag). OverlapEnrichment computes
enrichments for an external annotation in each state assuming a uniform back-
ground distribution. Specifically, the fold enrichment of a state for an external
annotation is

% of external annotation bases falling in that state
% of genome falling in that state

Positional enrichments of states relative to an anchor point from an external
annotation were computed using the ChromHMM NeighborhoodEnrichment
command at single base resolution (‘-b 1’ flag), single base spacing from the anchor
point (‘-s 1’) and using the ‘-l’ and ‘-r’ flags to specify the size of the region of
interest around the anchor point. The ‘-lowmem’ flag was also used for computing
the enrichments for OverlapEnrichment and NeighborhoodEnrichment.

External data sources for enrichment analyses. The external annotations of
repeat elements were obtained from the UCSC genome browser RepeatMasker
track21,39. We generated an annotation for whether a base overlapped any repeat
element, as well as separate annotations for bases falling in each class and family of
repeat elements. The gene annotations were obtained from GENCODE v19 for
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hg1951. CpG island annotations were obtained from the UCSC genome browser.
Annotations of SNPs with >=1% minor allele frequency were obtained from the
Common SNPs (147) track from the UCSC genome browser, which is based on
dbSNP build 147. GWAS catalog variants were obtained from the NHGRI-EBI
Catalog, accessed on 5 Dec 201648. For annotations of DNase I Hypersensitive Sites
(DHS) processed by the Roadmap Epigenomics Consortium, we used Macs2
narrowPeak calls5. The Fetal Brain and HepG2 DHS used were of epigenome
samples E082 and E118 respectively. For the median non-exonic DHS enrichments
and ranking of states in the heritability partitioning analysis we used narrowPeak
calls from the ENCODE consortium3. In the cases where ENCODE provided more
than one replicate for a cell or tissue type, we used the first replicate.

PhyloP and PhastCons scores and constrained element calls were obtained from
the UCSC genome browser. Assembly gap annotations were obtained from the Gap
track from the UCSC genome browser. The context-dependent tolerance score
(CDTS) used was that based on a cohort of 7784 unrelated individuals, following
the analyses in ref. 47, which focused on this version of the score. The CDTS and
variants from this cohort were both lifted from hg38 to hg19 using the liftOver tool
from the UCSC genome browser21.

Choice of number of states. We learned models with each number of states
between 2 and 100 states. We set 100 as the maximum number of states we would
consider for computational tractability and maintaining a manageable number of
states for analysis. The choice of a maximum of 100 also corresponds to the
number of species used and allows for the possibility of each state to cover 1% of
the genome. We analyzed the Bayesian Information Criterion (BIC) for models
with each number of states between 2 and 100, and found that the BIC generally
decreases as the number of states increases in the range considered (Supplementary
Fig. 1). The BIC was calculated using the BIC_HMM function from the HMMpa R
package52. Analyzing the 100-state model’s internal confidence estimate of its state
assignments also supported a larger number of states. Specifically, for each state in
the 100-state model we computed the average posterior probability of that state at
each base in the genome assigned to it, and confirmed consistently high average
posterior probability values in the range [0.92, 1.00] with a median of 0.97 (Sup-
plementary Fig. 2). The posterior probabilities were computed by running the
MakeSegmentation command in ChromHMM with the ‘-printposterior’ flag. We
also investigated if additional states in models with larger number of states were
biologically relevant. Specifically, we computed enrichments for various external
annotations for models with each number of states between 2 and 100 to determine
if biologically relevant enrichments were only robustly observed in models with
more than a certain number of states. In the case of CpG islands, we observed that
only models with at least 87 states consistently obtained >15 fold enrichment and
only models with at least 95 states consistently obtained >30 fold enrichment
(Supplementary Fig. 3). We saw a similar pattern of increasing enrichments for
annotated TSS for models with large number of states. We therefore decided to
analyze the largest model, 100 states, that we were considering. We note that
annotations based on chromatin states used fewer number of states, but were also
defined on fewer features at a coarser resolution and had a less uniform genome
coverage4,30,40.

State clustering. We clustered the states based on the correlation of vectors
containing the values fk,j and fk,j× gk,j for each species j defined above. State clus-
tering was performed using the hclust hierarchical clustering function from the cba
R package53. The leaves of the resulting hierarchical tree were ordered according to
the optimal leaf ordering algorithm54 implemented in the order.optimal R function
from the cba package. We then cut the tree such that the 8 major groups of states
were designated. The full tree is provided in Supplementary Fig. 4.

Genome segmentation using uniform transition probabilities. For analyzing the
effect of the transition probabilities on the genome segmentation, we created a
separate model, which was the same model we used in the main analyses, except we
set all transition probabilities to 0.01, corresponding to each state having an equal
probability of transitioning to any state including itself. We then created a new
genome segmentation by running the MakeSegmentation command in
ChromHMM with this new model. For each state, we counted how many of the
bases assigned to it in the original annotation were also assigned to it in the
annotation created with the uniform transitions, and divided this number by the
number of bases in the state in the original annotation. This calculation provided a
fraction from 0 to 1. We also reported the number of segments produced by each
model, where a segment is defined to be one or more consecutive bases all assigned
to the same state, such that any immediately adjacent bases are assigned to a
different state or states.

GO enrichments. For each state and each protein-coding gene based on GEN-
CODE, we computed the number of bases in that state that are within +/−2 kb of
the gene’s TSS. In the case of genes with multiple annotated TSS, we used the
outermost TSS. We then created a ranking of genes for every state by sorting the
genes in descending order of this number of bases. For each state, we then created a
set of 969 genes that represent the top 5% of genes in the state among the 19,397
genes we considered. We performed a GO enrichment analysis (ontology and

annotations files from 24 November 2016) for the top 5% genes in each state using
the STEM v1.3.10 software in batch mode with default options and the set of all
genes considered as background55. STEM computed an uncorrected p-value based
on the hypergeometric distribution for each term displayed in the figures sum-
marizing the analysis. STEM also reported corrected p-values for testing multiple
GO terms for a single state based on randomization to three significant digits,
which was less than 0.001 for all p-values mentioned in the main text.

Transcription factor-binding site motif enrichments. We computed the fold
enrichment of the conservation states within 15 bases upstream and downstream of
the center point of the POU5F1 and STAT known transcription factor-binding site
motifs37. The enrichment was computed relative to the background regions of the
genome that were used to identify the motifs, which excluded repeat elements,
coding sequence, and 3′ untranslated regions (UTRs). We used the known1 version
of the motifs for both POU5F1 and STAT.

Clustering of cell-type specific DHS enrichments. For the clustering of DHS
analysis, we first computed the fold enrichments of all conservation states for DHS
for 53 samples processed by the Roadmap Epigenomics consortium5, of which 14
were originally generated by the ENCODE project consortium3. We then selected
the subset of states that had a fold enrichment of at least two in at least one sample,
leading to a subset of 21 conservation states. To more directly focus on each state’s
relative enrichments across samples, we log2 transformed each enrichment value,
and then normalized the enrichments for each state by subtracting the mean
enrichment across samples and dividing by the standard deviation. We then
hierarchically clustered the states based on the correlation of their enrichments
across samples and hierarchically clustered the samples based on their correlations
across states using the pheatmap R package56. We also computed for each sample
the fold enrichment of DHS bases for bases in CpG islands, as the ratio between the
percent of DHS bases in CpG islands and the percent of the genome falling in CpG
islands.

Precision recall analysis for recovery of gene annotations. We randomly split
the 200 kb genome segments used for training the model and segmentation into
two halves corresponding to training and testing data. For each target set in the
precision-recall analyses, we ordered the ConsHMM states in decreasing order of
their enrichment for the target among the training set bases. We then used that
ordering to iteratively add the testing set bases in each state to form cumulative sets
of bases predicted to be of the target set, and computed the precision and recall for
them. For each constraint score, we computed the precision-recall curve for pre-
dicting the target set in the test data using two methods. For the first method, we
directly ordered bases in descending order of their assigned score. For the second
method, we split the sorted scores into 400 bins such that each bin contains on
average 0.25% of the genome, which was the size of the smallest state of the
ConsHMM model (0.25% of the genome in state 100). Specifically, we assigned all
bases in the genome where the score was not defined to one bin and then divided
the remaining bases uniformly among the 399 other bins based on their score. In
some cases, score increments were at the boundary between two bins at their
provided floating-point precision, or overlapped multiple bins. In these cases, we
uniformly split the target bases assigned to that score increment into multiple bins
proportionally to the overall percentage of the score increment falling in each bin.
We then treated the 400 bins as 400 states and followed the same procedure
described for the ConsHMM states. We also computed the precision and recall of
bases in each constrained element set for predicting the target set on the
testing data.

Precision recall analysis for recovery of DHS. For the precision recall analysis
for recovery of DHS analysis for a single cell type, we followed the same procedure
described above. We also separately evaluated recovery of DHS bases when
restricting the analysis to non-exonic regions. Additionally, both genome-wide and
within non-exonic regions, we evaluated the recovery of DHS bases when
restricting the analysis to bases distal to a TSS, defined as more than 2 kb from a
TSS. For the analysis of the recovery of DHS aggregated across cell and tissue types
we concatenated DHS from 53 cell or tissue types processed by the Roadmap
Epigenomics Consortium into one annotation in which each combination of
chromosome and cell or tissue type effectively becomes a new chromosome. We
then split the concatenated data into training and testing sets as described above.
We computed the enrichments of the ConsHMM states and scores split into bins as
detailed above, but multiplying the size of each state and bin by the number of
DNase I hypersensitivity data sets. The precision and recall values for the
ConsHMM states, constraint scores considered directly, constraint scores split into
bins, and constrained element sets were then computed on the testing data.

Enrichment analysis for phylogenetically partitioned CNEEs. We lifted over the
CNEEs from ref. 22 from hg18 coordinates to hg19, using the liftOver tool from the
UCSC genome browser with default settings21. These elements were previously
partitioned into subsets based on the inferred branch point of origin in a phylo-
genetic tree22. We computed the enrichments of the conservation states for all the
CNEEs and for each subset of the CNEEs separately, using the OverlapEnrichment
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command from ChromHMM at single nucleotide resolution (‘-b 1’ flag) and using
the low memory option (‘-lowmem’). We also computed analogous enrichments
for CNEEs overlapping PhastCons elements called on the same 100-way alignment
that the conservation states were annotated based on. To compute the enrichments
of CNEEs for bases in CpG islands we created an annotation consisting of a state
for each CNEE subset and one additional state for bases not assigned to any CNEE.
We then ran the same OverlapEnrichment command as above to compute
enrichments of CNEE bases for non-exonic CpG islands, and non-exonic bases in
general. The reported enrichment of CpG islands is the ratio of these two
enrichments, effectively computing an enrichment relative to the non-exonic
background. The set of non-exonic bases for the enrichment analysis was generated
by excluding all bases annotated as an exon in GENCODE v19.

Heritability partitioning analysis. The heritability partitioning was performed
using the LD-score regression ldsc software15. We partitioned the PhastCons
constrained elements into two halves based on a ranking of the conservation states.
We focused on the PhastCons constrained elements for this analysis, since it was
the only element set defined on the same alignments as the conservation states. We
focused on halves since the LD-score regression estimates can be unstable for
annotations covering too small of a percentage of the genome15. To determine the
two halves we ranked the conservation states in descending order of median fold-
enrichment of non-exonic bases for DHS from 123 experiments from the Uni-
versity of Washington ENCODE group3. We then divided bases in PhastCons
elements between the top 7 ranked states (1–5, 8 and 28), which contain 51.9% of
bases in PhastCons elements, and the bottom 93 states, which contain the other
48.1% of bases in PhastCons elements. We applied ldsc to these two sets for 8 traits
(age at menarche, body mass index (BMI), coronary artery disease, educational
attainment, height, low-density lipoprotein (LDL) levels, schizophrenia and
smoking behavior), all of which were previously considered in a heritability par-
titioning analysis15. We followed the procedure for partitioning heritability as done
in ref. 15, including using the baseline annotation set and 500 base-pair windows
around annotations to dampen the artificial inflation of heritability in neighboring
regions caused by linkage disequilibrium. The baseline annotation set contains a
range of annotations including DHS. For our analysis, we first removed the con-
strained element set already included in the baseline annotation set, then added our
two halves of PhastCons elements and finally ran the ldsc software on the full set of
annotations.

Enrichment analysis for variant prioritization scores. For each variant prior-
itization score included in the conservation state enrichment analysis of prioritized
bases, we extracted the top 1, 5, and 10% of all the bases ranked by each score, both
genome-wide and just in non-coding regions. The non-coding regions were defined
as the intersection of where the LINSIGHT and FunSeq2 scores provided a value,
as these two scores were only defined on non-coding regions. This intersection
results in a set of bases covering 90% of the genome that excludes coding regions in
addition to other regions filtered for technical reasons by either of the two
methods19,41. For each score we chose the score threshold that gave us a size for the
top set that was as close as possible to the target percentage, which did not always
exactly match the target percentage due to the precision of the scores. If a score did
not provide a value for a particular base being considered, then that base was
assigned to the lowest value of that score, but would still be counted when
establishing the percentage thresholds. For the scores that provided separate score
values for alternate alleles at a certain position, we used the maximum of the values
for all alleles. The state enrichments were then computed using the Over-
lapEnrichment command from ChromHMM at single base resolution (‘-b 1’ flag)
and with the low memory option (‘-lowmem’ flag). For the analysis restricted to
non-coding regions, we also computed the enrichment of the states for this
background region using the same command. The enrichment for each score in a
state was then divided by the enrichment of the background region for the state.
For the Eigen and Eigen-PC scores we used version 1.1, for FunSeq2 we used
version 2.1.6, and for CADD we used both v1.0 and v1.4.

INSIGHT analysis. The INSIGHT49 package was used with parameters of 15%
allele frequency threshold, 100 minimum neutral flanking sites and the optimizer
method BFGS_DIRECT for the OPT_METHOD flag.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The ConsHMM conservation state annotations of hg19 are available at https://doi.org/
10.6084/m9.figshare.8162036.v1 and https://github.com/ernstlab/ConsHMM. Data behind
Supplementary Figs. 2, 5, 6, 8, 9, 13–16, 23–27 is available in Supplementary Data 2 and
additional data behind the main figures and Supplementary Fig. 11 is available in
Supplementary Data 3. The input multiple species alignment for producing the conservation
state annotations is available at http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
multiz100way/. The following URLs contain data sets that were used in the downstream
analyses: 25-state chromatin state annotations: http://compbio.mit.edu/roadmap; CADD

score v1.0: http://krishna.gs.washington.edu/download/CADD/v1.0/whole_genome_SNVs.
tsv.gz; CADD score v1.4: http://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/
whole_genome_SNVs.tsv.gz; CDTS score: http://www.hli-opendata.com/noncoding/
coord_CDTS_percentile_N7794unrelated.txt.gz, http://www.hli-opendata.com/noncoding/
SNVusedForCDTScomputation_N7794unrelated_allelicFrequency0.001truncated.txt.gz;
CNEEs from ref. 22: http://www.stanford.edu/~lowec/data/threePeriods/hg19cnee.bed.gz;
DANN score: https://cbcl.ics.uci.edu/public_data/DANN/data/; EIGEN and Eigen-PC score:
https://xioniti01.u.hpc.mssm.edu/v1.1/; ENCODE DHS: http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeUwDnase/; FATHMM-XF score: http://fathmm.
biocompute.org.uk/fathmm-xf/; FIRE score: https://sites.google.com/site/
fireregulatoryvariation/; fitCons score: http://compgen.cshl.edu/fitCons/0downloads/tracks/
i6/scores/; FunSeq2 score: http://org.gersteinlab.funseq.s3-website-us-east-1.amazonaws.
com/funseq2.1.2/hg19_NCscore_funseq216.tsv.bgz; GENCODE v19: https://www.
gencodegenes.org/releases/19.html; GERP++ scores and constrained element calls: http://
mendel.stanford.edu/SidowLab/downloads/gerp/; GWAS catalog variants: https://www.ebi.
ac.uk/gwas/; LINSIGHT score: http://compgen.cshl.edu/~yihuang/tracks/LINSIGHT.bw;
Motif instances and background: http://compbio.mit.edu/encode-motifs/; REMM score:
https://zenodo.org/record/1197579/files/ReMM.v0.3.1.tsv.gz; Roadmap Epigenomics DHS:
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/; SiPhy-
omega and SiPhy-pi constrained element calls (hg19 liftOver): https://www.broadinstitute.
org/mammals-models/29-mammals-project-supplementary-info.

Code availability
The ConsHMM software is available through https://github.com/ernstlab/ConsHMM. The
ChromHMM software used for enrichment analyses and on top of which ConsHMM is
built is available at http://www.biolchem.ucla.edu/labs/ernst/ChromHMM/. The STEM
software used for GO enrichment analysis is available at http://sb.cs.cmu.edu/stem/. The
ldsc software used for the heritability partitioning analysis is available at https://github.com/
bulik/ldsc. The INSIGHT software used for selection analyses is available at http://compgen.
cshl.edu/INSIGHT/downloads/INSIGHTpackage/.
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