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MicroTools enables automated quantification
of capillary density and red blood cell velocity
in handheld vital microscopy
Matthias Peter Hilty 1, Philippe Guerci 1, Yasin Ince1, Fevzi Toraman2 & Can Ince1

Direct assessment of capillary perfusion has been prioritized in hemodynamic management

of critically ill patients in addition to optimizing blood flow on the global scale. Sublingual

handheld vital microscopy has enabled online acquisition of moving image sequences of the

microcirculation, including the flow of individual red blood cells in the capillary network.

However, due to inherent content complexity, manual image sequence analysis remained

gold standard, introducing inter-observer variability and precluding real-time image analysis

for clinical therapy guidance. Here we introduce an advanced computer vision algorithm

for instantaneous analysis and quantification of morphometric and kinetic information

related to capillary blood flow in the sublingual microcirculation. We evaluated this technique

in a porcine model of septic shock and resuscitation and cardiac surgery patients. This

development is of high clinical relevance because it enables implementation of point-of-care

goal-directed resuscitation procedures based on correction of microcirculatory perfusion in

critically ill and perioperative patients.
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In critically ill and perioperative patients, the main objective of
resuscitation is to recruit the microcirculation1,2. The surro-
gates that are in clinical use are arterial blood pressure and

peripheral perfusion. Techniques for measuring the micro-
circulation have improved substantially and have evolved from
methods that are limited in scope, such as velocity-based laser
Doppler3 and near-infrared spectroscopy4, to handheld vital
microscopy (HVM). With imaging technology having progressed
from orthogonal polarization spectral to sidestream dark field and
incident dark field imaging, HVM can directly visualize the flow
of red blood cells5,6, thereby demonstrating that alterations in
microcirculatory function in states of shock and during surgery
affect the outcome7,8. Application on the sublingual micro-
circulation has proven especially relevant in a clinical setting9.
While goal-directed therapy on arterial blood pressure has failed
to demonstrate improved survival10–12, various forms of altera-
tions of the microcirculation and functional parameters13 have
been identified via manual analysis of HVM image sequences and
provide insight into possible treatment targets14. However, to
target the microcirculation during resuscitation, automated real-
time analysis capability of HVM image sequences is required, as
was recently stated in an international consensus paper published
by the European society of Intensive Care Medicine9. Automated
image sequence analysis has proven difficult to develop mainly
due to the inherent complexity of the content. Hence, previous
attempts at creating algorithms for measuring the total vessel
density (TVD) and functional capillary density (FCD) as mea-
sures of the microcirculatory diffusion capacity have not been
successfully validated. Thus, manual analysis using the AVA
3.2 software package (Advanced Vascular Analysis, Academic
Medical Center, University of Amsterdam)15, which is a tool that
primarily facilitates manual analysis via a process that requires
approximately 20 min per image sequence16, has remained the
gold standard for vessel recognition. The assessment of red blood
cell displacement as a measure of the microcirculatory convection
capacity using current tools represents an even bigger challenge.
Although measurement of the absolute red blood cell velocity
(RBCv) of selected capillaries has been realized using manual
space–time diagram analysis17, applying this manual method to
all capillaries rendered in an HVM image sequence for accurate
and unbiased representation of RBCv within the field of view is
not feasible. Thus, subjective and qualitative surrogate parameters
for RBCv have been developed, such as the per-quadrant or per-
capillary microcirculatory flow index (MFI)18,19. It has been
demonstrated that a per-capillary application of MFI better
represents RBCv than a per-quadrant application20 and per-
capillary assessment of MFI is used to determine FCD as a
measure of perfused capillary density and the proportion of
perfused vessels (PPV). However, information in HVM image
sequences that more accurately reflects the convection compo-
nent of microcirculatory function is entirely inaccessible using
current tools, such as the absolute RBCv within the field of view
or even more the distribution of the absolute RBCv across indi-
vidual vessels within the field of view.

Since the early phase of microcirculatory research, two main
factors have opened the door to employing complex algorithms
on large datasets such as HVM image sequences: an increase in
computer processing power by seven orders of magnitude within
30 years and the development of advanced computer vision
algorithms, in conjunction with ongoing industrial digitalization,
that are available for further development by the scientific com-
munity due to their open-source nature21. Building on these
achievements, a novel advanced computer vision algorithm and a
fully automated software tool called MicroTools were developed
to analyze HVM image sequences without human intervention
and objectively extract the parameters given in Table 1. Our

hypotheses are that (I) automated recognition of vessels and, thus,
measurement of TVD in HVM image sequences using advanced
computer vision techniques is equivalent to manual analysis; (II)
the perfusion state of a single capillary, as defined in the current
consensus by the subjective, qualitative MFI score, can be
represented by the cutoff value defining the presence of micro-
circulatory pathology of the absolute RBCv, as measured by a
space–time diagram within that capillary; and (III) automated
space–time diagram analysis is equivalent to manual analysis,
thereby enabling automated algorithm-based measurement of
FCD and PPV and objective measurement of RBCv in HVM
image sequences. Our objective in this paper is to describe the
algorithm and test our hypotheses by validating the algorithm
against manual analysis using the AVA 3.2 software on sublingual
HVM image sequences in a porcine model of septic shock and
on cardiac surgery patients following the initiation of cardio-
pulmonary bypass.

Results
Vessel recognition workflow. HVM imaging directly visualizes
hemoglobin that is contained in red blood cells, as opposed to
anatomical structures of the tissue, thereby defining the func-
tional component of the microcirculation in terms of oxygen
carrying capacity. Thus, the boundaries of microvascular struc-
tures within an HVM image sequence are defined by the spatial
arrangement and direction of movement of red blood cells, and
structures not currently perfused by red blood cells may only be
visualized using recruitment maneuvers as described elsewhere22.
These structures, which may be further categorized into arterioles,
capillaries, and venules in subsequent steps, are referred to as
“vessels” in the current manuscript. To optimize vessel recogni-
tion, frame averaging is utilized as a technique to reduce the
impact of plasma gaps between consecutive red blood cells on
vessel recognition in HVM image sequences15. The MicroTools
software package computes a mean image from the stabilized
HVM image sequence based on per-pixel grayscale values (Figs. 1
and 2a). Contrast-limited adaptive histogram equalization is
applied to the mean image to effectively reduce the influence of
uneven lighting or background structures, thereby increasing the
signal-to-noise ratio in vessel recognition (Fig. 2b). A combina-
tion of first- and second-derivative Gaussian kernel convolutions
with the contrast-enhanced time-based mean image and an
orientation-based linking algorithm then yields the centerlines
and diameters of the recognized vessels (Fig. 2c). The mean vessel
diameter is used for classification into capillaries (≤20;μm) and
venules according to the consensus requirements9. TVD is cal-
culated in concordance with current consensus9 as the sum of the
lengths of all detected capillaries divided by the field of view. In
the literature, the term TVD has been inconsistently used to refer
to the density of vessels of varying diameters; in the current study,
it explicitly refers to the capillary density as reflecting that part of
the microcirculation as being primarily responsible for oxygen
transport to the tissues.

Absolute RBCv and capillary perfusion. In the proposed algo-
rithm, velocity estimation of red blood cell movement along a
vessel in the present algorithm is based on space–time
diagrams23,24, which are two-dimensional representations of
grayscale values along a straightened vessel centerline that form
the vertical axis and a horizontal time axis (Figs. 1 and 3).
Individual red blood cell paths are identified within space–time
diagrams; this is analogous to vessel recognition in the mean
image. After artifact elimination, the red blood cell path velocity
is represented by the mean slope. The vessel RBCv is equal to the
mean velocity of the red blood cell paths contained therein and a
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vessel is considered perfused based on a per-vessel density dis-
tribution of red blood cell path velocities. RBCv over the entire
field of view is computed as a weighted mean of the capillary
RBCv by capillary length to avoid the introduction of bias by
three-dimensional volume-to-focal plane translation, such as in
the recording of an HVM image sequence that depicts a capillary
network. Depending on the position of the focal plane, a capillary
with high RBCv could be represented as several short segments,
whereas a capillary of equal length with low RBCv could be
represented as a single long segment, thereby over-representing
the former capillary in the velocity distribution within the field of
view. Based on the capillary perfusion classification, FCD is cal-
culated as the sum of the lengths of all perfused capillaries divided
by the field of view. Consequently, PPV is calculated as the
length-weighted mean of the categorical per-vessel perfusion
states and represents the quotient of FCD and TVD.

Validation in a standardized model of septic shock. The pro-
posed algorithm was validated against manual analysis using the
AVA 3.2 software on HVM image sequences that were obtained
from sublingual microcirculation observations in a porcine model
of septic shock and resuscitation25. A porcine model was selected
to minimize the inter-individual variability and enable the col-
lection of HVM image sequences under highly standardized
conditions and of optimal visual quality. Moreover, septic shock
represents an ideal setting for the incorporation of the variability
in TVD, RBCv, and the presence of perfused and non-perfused
capillaries. Fifty-three HVM image sequences that were recorded
during the experiments were analyzed manually and using the

algorithm: 25 in the septic shock group and 28 in the control
group. All image sequences were of satisfactory quality.

Automated vessel recognition: In 53 HVM image sequences,
2116 vessels were detected by the algorithm, 1922 of which were
classified as capillaries. The overall capillary TVD was measured
at 18.9 ± 3.9 manually and 19.9 ± 4.1 mmmm−2 using the
algorithm (Table 2). Identification of the total lengths of all
false-negative and false-positive detected capillaries by the
algorithm compared to manual detection in each image sequence
yielded a false-negative capillary density of 2.1 ± 1.5 (10%) and
false-positive capillary density of 0.5 ± 0.4 mmmm−2 (2%).
A good correlation between manually measured and algorithm-
based capillary TVD across both groups and all timepoints was
identified (r= 0.7, p < 0.0001). Bland–Altman analysis revealed a
bias and a level of agreement of 0.9 (−5.7 to 7.5) mmmm−2,
along with a precision and a percentage error of 3.3 mmmm−2

and 6.7%, respectively (Fig. 4a). In the experimental septic shock
group, the TVD values that were detected manually and
algorithmically were similar at baseline, after induction of septic
shock and after resuscitation (Table 2).

Automated space–time diagram generation and RBCv measure-
ment: The algorithm tracked 118 907 red blood cells across 5667
frames in 53 HVM image sequences. Overall, algorithm-based
space–time analysis revealed an RBCv of 232±75 µm s−1

(Table 2). In the experimental septic shock group, a decrease of
19% in the manually detected MFI across the induction of shock
was reflected in a decrease of 40% in the algorithmically measured
RBCv (Table 2). MFI is a qualitative score that is specified in
arbitrary units, in contrast to the values that are derived from
space–time diagrams, which are quantitative (µm s−1). For the

Table 1 Objective parameters of the microcirculation computed from vessel detection and space–time diagram analysis using the
proposed advanced computer vision algorithm

Symbol Unit Description Physiological context

Per field of view
TVD, total vessel density
for capillaries

mmmm−2 Sum of the length of all capillaries containing red
blood cells, divided by field of view

Measure of microcirculatory diffusion capacity

PPV, proportion of
perfused vessels for
capillaries

1 Weighted mean (by vessel length) of the
categorical per-vessel “non-perfused” property,
which describes a per-space-time-diagram-ridge
velocity frequency histogram area under the curve
proportion threshold transgression, after artifact
elimination

Basis for FCD calculation

FCD, functional capillary
density

mmmm−2 Sum of the length of all capillaries containing
moving red blood cells, divided by field of view

Similar to PVD, with the advantage that it does not
suffer from inconsistent definitions based on
subjective categorical evaluation of capillary flow
velocity

RBCv, mean capillary
velocity

µm s−1 Weighted mean (by vessel length) of the absolute
red blood cell velocity in all capillaries within the
field of view

Absolute blood flow velocity as a measure of
microcirculatory convection capacity

Per vessel
Length µm Vessel length along the centerline
Mean diameter µm Mean of all diameter measurements perpendicular

to the centerline
Mean RBCv µm s−1 Mean of all RBCv measurements in non-discarded

RBC paths within one vessel
vmax µm s−1 Maximum detectable RBCv given the length of the

vessel and frame rate of the image sequence
Vessel type Categorical {capillary, venule}
Perfusion type Categorical {perfused, non-perfused}

Per RBC path
RBCv µm s−1 First derivative by time for an individual RBC path
RBC path type categorical {no flow/low flow, normal flow, artifact}
Curvature index 1 Proportion of length of straight line between start

and endpoint of RBC path, and actual RBC
path length
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202 randomly selected capillaries with manually generated
space–time diagrams across all timepoints, a good correlation
between manually determined and algorithm-based RBCv was
identified (r= 0.8, p < 0.0001). Bland–Altman analysis revealed a
bias and level of agreement of 17 (−117 to 212) µm s−1 and a

precision of 97 µm s−1 (Fig. 4b). An increased variability in the
RBCv difference was observed for higher mean values.

Prediction of capillary perfusion state via space–time diagram-
derived RBCv: Categorized according to the four levels of the MFI
score, a gradual increase in the capillary RBCv, as measured both

Stabilized
dark field HVM

image sequence

Per frame gaussian smoothing
and histrogram equalization

Inter-frame brightness
normalization

Per vessel space-time diagram
generation

Framerate dependent artifact
detection

Distribution-based RBC path and 
vessel classification

Per spsce-time diagram histogram
equalization

RBC path detection using principal
curvature-based region detection

Per vessel capillary length and per
linepoint diameter

Length-weighted mean
absolute RBCv

Function capillary density
(FCD), proportion of perfused

vessels (PPV)
Total vessel density (TVD)

Per capillary
mean absolute

RBCv

Per capillary
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Fig. 1 Schematic representation of the proposed advanced computer vision algorithm. The flowchart is illustrated with representative examples from the
validation dataset
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manually and using the algorithm, was observed (p < 0.0001),
whereas capillaries with MFI scores of 2 and 3 exhibited similar
RBCv values (Fig. 5a). Receiver operating characteristics analysis
revealed areas under the curve of 0.85 and 0.92 for the prediction
of the capillary perfusion state as defined by MFI 0–1 and 2–3 for
algorithm-based and manual analyses, respectively (Fig. 5b).
Prediction of normal capillary flow behavior (MFI > 2) via the
two methods of RBCv measurement yields areas under the curve
of 0.93 and 0.96 (Fig. 5c). This finding is reflected in a clear
differentiation of the density distributions of both manual and
algorithm-based capillary RBCv values in capillaries with MFI
0–1 versus capillaries with MFI 2–3 (Fig. 6a).

Overall, PPV based on per-vessel subjective MFI and PPV
based on algorithm-derived space–time diagrams correlated well
(r= 0.8, p < 0.0001). Bland–Altman analysis revealed a bias and
level of agreement of −3 (−20 to 14) % and a precision and
percentage error of 9% and −3.3%, respectively (Supplementary
Fig. 1A). Similar results are obtained for FCD that was derived
using both methods (r= 0.7, p < 0.0001) (Supplementary Fig-
ure 1B), with Bland–Altman analysis revealing a bias and level of
agreement of 0.2 (−6.0 to 6.3) mmmm−2 and a precision and
percentage error of 3.1 mmmm−2 and 2.9%, respectively (Fig. 4b).
In septic shock, decreases of 20% and 22% were observed in
manually and algorithmically determined PPV, with a similar
result for FCD (Table 2). Neither parameter recovered after
resuscitation, according to both manual and algorithm-based
measurements; in the original publication, the same result was
obtained for this data set and confirmed with contrast-enhanced
ultrasound measurements25. The density distribution of the
capillary RBCv exhibits a left-shift of the density peak throughout
the induction of septic shock, which is accompanied by a decrease
in density of normal RBCv that spares a density peak in the high-
RBCv range. Throughout resuscitation, the former changes were
not reversed; however, the RBCv density was partially restored in
the normal- and high- RBCv ranges (Fig. 6b, c).

Application of the algorithm to clinical data. In recording and
interpreting HVM image sequences that are obtained in clinical
settings, challenges are encountered that are not present in a
laboratory environment, such as compromised sublingual
access and increased inter-individual variability. Thus, it is
important for clinical applicability that an automated image
analysis algorithm satisfy various robustness requirements.
Cardiopulmonary bypass represents an ideal environment for
studying parameters of diffusion and convection in HVM
image sequences since the added extracorporeal circulation is
expected to increase RBCv, while the hemodilution that is
induced by rapid introduction of a large colloid priming volume
into the cardiovascular system should decrease the density of
capillaries that are perfused with red blood cells. Thirty-six
HVM image sequences that were recorded during the experi-
ments were analyzed manually and using the algorithm: 20
before and 16 after the initiation of cardiopulmonary bypass.
The manual and algorithm-based analyses correlated well for
TVD (r= 0.7, p < 0.0001, bias 0.0 mmmm−2, level of agree-
ment −7.3 to 7.3 mmmm−2, precision 3.6 mmmm−2,
and percentage error 1.9%) and FCD (r= 0.7, p < 0.0001, bias
−0.6 mmmm−2, level of agreement −7.6 to 6.5 mmmm−2,
precision 3.5 mmmm−2, and percentage error −0.5%) (Fig. 7).
After the initiation of cardiopulmonary bypass, decreases in
TVD and FCD were demonstrated via the manual and
algorithm-based analyses (Table 3). The algorithm-based ana-
lysis also revealed an increase in RBCv, whereas qualitative
grading of microvascular flow using the MFI score yielded
“normal flow” both before and after the initiation of cardio-
pulmonary bypass (Table 3).

Time requirement for analysis. For the manual analysis of a total
of 89 HVM image sequences, approximately 30 h of manual labor
by an experienced human operator were required. In contrast, the

a b

c d

Fig. 2 Representative example of a mean image (a) and context-aware contrasted mean image (b) generated from a stabilized HVM image sequence.
Algorithmically recognized vessel structures are visualized in c, while superimposition of the detected vessel structures onto the mean image demonstrate
short segments of false-negative (d, black arrows) and false-positive (d, white arrows) vessel recognition. Recognized capillary and venular centerlines are
marked as black and dark gray lines (c) or dashed lines (d), outer vessel delineations are marked as light gray lines
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algorithm-based analysis of 9013 frames in 89 HVM image
sequences, including recognition and categorization of 5362
vessels and 175,650 RBC paths, was performed in 140 s on
inexpensive and readily available consumer computing hardware.
This corresponds to an analysis time of 0.388 s in real time per 1 s
of microcirculatory monitoring.

Discussion
In the present study, we propose a novel algorithm that is
implemented in the MicroTools software package and employs
advanced computer vision techniques for the automated analysis
of HVM image sequences of the sublingual microcirculation,
thereby meeting one of the expectations for future development
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Fig. 3 Representative examples of algorithmically generated space–time diagrams and corresponding detection of individual RBC paths before and after frame-
by-frame image enhancement. Top row (a–d) represent algorithmically generated space–time diagrams; in the bottom row (a–d) individual RBC path
detection is shown. Top left images (a–d) represent space–time diagrams produced without further image processing and demonstrate artifacts introduced by
inter-frame variability in brightness (“flickering”) that translate into individual RBC path detection artifacts (bottom row, a–d). Results of frame-by-frame image
enhancement are shown on top right (a–d), demonstrating marked reduction in individual RBC path detection artifacts (bottom row, a–d). Representative
examples are given for capillaries with normal flow (individual vessel MFI= 3, a); “hyperdynamic” flow (b), demonstrating reliable detection of RBC velocity
even when approaching vmax; intermittent flow (individual vessel MFI= 1, c); and no flow (“barcode sign”, individual vessel MFI=0, d)
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Table 2 Development of microcirculatory parameters across induction of septic shock and resuscitation as reflected by manual
analysis as well as using an advanced computer vision algorithm

All
individuals

Septic shock group

Baseline Septic shock Resuscitation

n= 17 n= 10 n= 10 n= 5

Mean ± SD Mean ± SD Mean ± SD Estimate ± SE (CI) t statistic Mean ± SD Estimate ± SE (CI) t statistic p

Total vessel density (capillaries)
TVD (manual) [mmmm−2] 18.9 ± 3.9 19.7 ± 3.9 17.6 ± 5.2 −1.7 ± 1.1 (−3.7 to 0.2) −1.53 16.9 ± 3.4 0.7 ± 1.0 (−0.9 to 2.4) 0.76 0.18
TVD (algorithm) [mm mm−2] 19.9 ± 4.1 22.3 ± 4.6 20.5 ± 4.6 −1.0 ± 1.5 (−3.4 to 1.5) −0.66 20.9 ± 2.9 0.9 ± 1.3 (−1.2 to 3.1) 0.74 0.54

Red blood cell flow velocity (capillaries)
MFI (manual) [1] 2.7 ± 0.5 2.9 ± 0.3 2.2 ± 0.5 −0.5 ± 0.2 (−0.8 to −0.2) −2.62 2.2 ± 0.8 0.2 ± 0.2 (0.0–0.5) 1.55 0.01
RBCv (algorithm) [µm s−1] 232 ± 75 270 ± 78 165 ± 67 −73 ± 21 (−110 to −37) −3.41 163 ± 75 44 ± 18 (41–57) 2.36 <0.001

Functional capillary density
FCD (manual) [mmmm−2] 16.6 ± 4.1 18.0 ± 3.4 13.4 ± 3.9 −4.0 ± 1.3 (−6.2 to −1.8) −3.11 12.3 ± 3.0 1.5 ± 1.1 (−0.5 to 3.4) 1.30 <0.01
PPV (manual) [1] 88 ± 10 92 ± 6 77 ± 11 −13 ± 4 (−19 to −7) −3.55 74 ± 13 5 ± 3 (−1 to 10) 1.48 <0.01
FCD (algorithm) [mm mm−2] 16.7 ± 4.2 20.1 ± 4.0 14.8 ± 4.9 −3.9 ± 1.5 (−6.5 to −1.3) −2.57 14.6 ± 2.5 2.1 ± 1.3 (−0.1 to 4.4) 1.60 <0.01
PPV (algorithm) [mm mm−2] 85 ± 13 91 ± 7 73 ± 18 −14 ± 5 (−22 to −6) −2.98 71 ± 15 6 ± 4 (0–13) 1.56 <0.01

Timepoints were compared using a one-way mixed linear model analysis with timepoint as fixed effects and subject number as random effects. Estimates, standard error, confidence intervals, and t
statistic are given for each timepoint. Full model p values were computed calculated using a likelihood ratio test. TVD total vessel density, FCD functional capillary density, PPV proportion of perfused
vessels, MFI microvascular flow index, RBCv red blood cell velocity, SD standard deviation, SE standard error, CI confidence interval
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Fig. 4 Good correlation was observed between manually measured and algorithm-based capillary TVD (a) and RBCv (b) in the septic shock model. TVD
was compared by field of view in the septic shock and control groups (n= 53), and good correlation was observed (r= 0.7, p < 0.0001, bias 0.9 mmmm−2,
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of the 2018 International Consensus in the assessment of sub-
lingual microcirculation in critically ill patients9. On the valida-
tion dataset, the proposed algorithm (I) enables automated
measurement of TVD that is equivalent to manual analysis.
Furthermore, via manual and algorithm-based analyses of
space–time diagrams, (II) a consistent relationship between the
subjective qualitative analysis of the capillary perfusion state and
the absolute RBCv values that are based on space–time diagrams
was demonstrated, thereby enabling the proposed algorithm to
(III) reliably measure FCD and PPV as important functional
parameters that are related to the physiological performance of
the microcirculation. In this way, systematic automated
space–time diagram analysis, as represented in the present study,
enables for the first time the objective measurement of the
absolute RBCv in HVM image sequences.

Early attempts at automated vessel recognition in HVM image
sequences have struggled to model the inherent properties of
HVM image sequences. Dobbe and co-workers15 used a simpli-
fied implementation of principal-curvature-based region detec-
tion, most likely to accommodate for the lower processing power
that was available at the time. The method relies on several
manual adjustments and, at best, may be used to assist in manual
analysis. As a consequence, currently, the AVA 3.2 software is
mainly used for its manual drawing capabilities. Bezemer and co-
workers16 improved upon this approach by adding contrast-
based detection of false-positive candidates via the vessel detec-
tion algorithm; however, they were not able to match the
algorithm-based detection to manual image analysis via SDF
imaging. Demir and co-workers26 used a combination of
thresholding and the Euclidean distance transform to detect and
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Fig. 5 A gradual increase in algorithm-based and manually measured capillary RBCv with increasing MFI score across all timepoints in the septic shock
model (a) is reflected in prediction of capillary perfusion state as defined by per-capillary MFI score ≥2 (b) and normal flow behavior as defined by per-
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automatically discriminate between perfused and non-perfused
capillaries. Software packages building on further evolutions of
such algorithms, as well as incorporating Frangi’s multiscale
vessel enhancement filtering27, did not reproduce manual analysis
to a satisfactory degree as has been shown for CCTools 1.7.x
(Braedius Medical, Huizen, The Netherlands)28 and AVA 4
(Microvision BV, Amsterdam, The Netherlands)29. Thus, none of
these methods have been widely adopted and manual analysis
using AVA 3.2 has so far remained the gold standard for vessel
recognition. Quantification of red blood cell flow velocity has

constituted an even greater challenge. Measurement of RBCv
based on manual generation of space–time diagrams and manual
identification of a small proportion of the available red blood cell
paths therein have been previously employed13,24. However, due
to the practical inability to manually process the thousands of
capillaries and hundreds of thousands of RBC paths that are
contained in a typical research dataset and the associated intro-
duction of bias, this method has not been widely used. Other
approaches that are independent of space–time diagrams have
been implemented. Bezemer and co-workers16 used temporal
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pixel intensity fluctuations that are consequent to red blood cell
passage, which are quantified by the standard deviation of the
intensities, to derive a relative parameter of red blood cell
movement. CCtools 1.7.x has introduced an indicator of relative
movement that is based on the intensity variation along the
capillary centerlines; it is called the average perfused speed indi-
cator. However, these were not quantitative measures, but pro-
vided relative indices13,30. These approaches were less dependent
on the capability for reliable vessel recognition; however, they
were hampered by their relative nature and their resulting in
incomparability to other data. For these reasons, the scientific
community has mostly relied on an entirely subjective, qualitative
score of flow velocity—MFI. In contrast, our proposed algorithm
realizes improved vessel recognition by introducing a combina-
tion of contrasting techniques that were demonstrated to improve
preconditions for further analysis26 via the detection of discrete
curvilinear structures with a high degree of independence from
asymmetries in the background composition. In addition, the

concept of discrete detection passes that are tailored to various
different vessel structures, such as capillaries and venules, is
introduced. This concept enables, for the first time, the systematic
assessment of the absolute RBCv for all tracked red blood cell
paths within every capillary and yields a meaningful representa-
tion of RBCv for the entire field of view by employing length-
based weighting of RBCv in individual capillaries. Thus, the
measure of RBCv derived for the field of view is rendered inde-
pendent of the vessel segmentation and adheres to the physio-
logical principle that longer capillaries contribute more to the
capillary delivery of oxygen. Additionally, the proposed software
package addresses concerns in current practice that originate
from the use of outdated compression algorithms for HVM image
sequences, such as the deterioration of the signal-to-noise ratio
with every editing action in AVA 3.2 and the use of uncom-
pressed raw data, which results in very large storage require-
ments, e.g., in the CCtools 1.7.x software. These concerns are
addressed via the use of a newly developed, lossless compressed
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Fig. 7 Good correlation was observed between manually measured and algorithm-based TVD and FCD throughout initiation of cardiopulmonary bypass.
TVD and FCD were compared by field of view before and after initiation of cardiopulmonary bypass (n= 39). Dashed lines represent identity lines. Good
correlation was observed for TVD (r= 0.7, p < 0.0001, bias 0.0 mmmm−2, level of agreement −7.3 to 7.3 mmmm−2, precision 3.6 mmmm−2,
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percentage error −0.5 %). Dashed lines represent identity lines. In Bland–Altman analysis, solid line represents bias and dotted lines represent ±2σ levels
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Table 3 Development of microcirculatory parameters across initiation of cardiopulmonary bypass as reflected by manual
analysis as well as using an advanced computer vision algorithm

Before CBP initiation After CBP initiation

n= 11 n= 11

Mean ± SD Mean ± SD Estimate ± SE (CI) t statistic p

Total vessel density (capillaries)
TVD (manual) [mmmm−2] 24.9 ± 1.3 20.9 ± 0.9 −4.0 ± 0.9 (−5.6 to −2.4) −4.33 <0.001
TVD (algorithm) [mmmm−2] 23.5 ± 0.6 20.7 ± 1.0 −2.8 ± 0.8 (−3.1 to −1.4) −3.55 <0.01

Red blood cell flow velocity (capillaries)
MFI (manual) [1] 2.8 ± 0.1 2.8 ± 0.1 0.0 ± 0.1 (−0.2 to 0.2) −0.28 0.78
RBCv (algorithm) [µm s−1] 330 ± 10 367 ± 10 38 ± 10 (35–56) 3.66 <0.01

Functional capillary density
FCD (manual) [mmmm−2] 23.5 ± 1.2 19.2 ± 1.2 −4.3 ± 1.0 (−4.5 to −2.5) −4.15 <0.01
PPV (manual) [1] 95 ± 1 91 ± 3 −3 ± 3 (−8 to 2) −1.14 0.27
FCD (algorithm) [mmmm−2] 21.6 ± 0.7 19.2 ± 0.9 −2.3 ± 0.9 (−2.7 to −0.8) −2.72 0.02
PPV (algorithm) [mmmm−2] 92 ± 1 93 ± 1 1 ± 1 (1–3) 1.16 0.26

Timepoints were compared using a one-way mixed linear model analysis with timepoint as fixed effects and subject number as random effect. Estimates, standard error, confidence intervals, and t
statistic are given for each timepoint. Full model p values were computed calculated using a likelihood ratio test. CPB cardiopulmonary bypass, TVD total vessel density, FCD functional capillary density,
PPV proportion of perfused vessels, MFI microvascular flow index, RBCv red blood cell velocity, SD standard deviation, SE standard error, CI confidence interval
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file format for the storage of raw data with embedded metadata
that is based on the HFYU algorithm. Such files can be previewed
on any standard-abiding video playback software.

As a measure of vessel recognition performance of the pro-
posed algorithm, percentage error for algorithm-based TVD and
false-negative and false-positive rates, compared to manual vessel
recognition, of below 10% were found. Although in theory, a good
correlation between manual and algorithm-based TVD may ori-
ginate in separate structures whose total length would result in a
similar TVD, the low false-negative and false-positive rates that
are detected in our data indicate the detection of congruent vessel
structures by both methods. Thus, measurements that are
obtained using the proposed algorithm reflect the micro-
circulatory structure and physiology as accurately as manual
analysis. Furthermore, the false-negative rate was found to be
approximately fivefold higher than the false-positive rate, thereby
increasing the robustness of the algorithm by reducing the ran-
dom signal noise that is due to false recognition of the back-
ground structures as vessels. Previous data on the accuracy of
manual analysis of HVM image sequences demonstrated an intra-
observer variability of 9.6% and inter-observer variability of
between 13% and 26%31. In contrast, the lower observed varia-
bility in algorithm-based TVD as compared to manual analysis in
the present study is attributed to the elimination of intra-
individual variability via the use of a clearly defined algorithm,
and false-positive and false-negative rates well below the
described inter-observer variability for manual analysis. The
algorithm’s tendency after induction of septic shock to yield
minimally larger values for TVD as compared to manual analysis
may be due to inter-observer variability in manual analysis, dif-
ferences in linking behavior of capillaries at intersections, or
potential difficulties to correctly identify capillaries with abnor-
mal red blood cell flow behavior by the manual operator.

Validation of the automated analysis of FCD and PPV was
successfully achieved in three steps: First, clear differentiation of
capillaries that were subjectively classified as perfused versus non-
perfused according to space–time diagram-based measurements
of RBCv was demonstrated. Second, demonstrating good corre-
lation of the algorithm-based space–time diagram analysis, which
was fundamentally enabled by automated recognition of capil-
laries as discussed above, with manual space–time diagram ana-
lysis was demonstrated. The increased variability in the RBCv
difference between automated and manual that was observed at
higher mean values may be due to the larger change in RBCv that
results from a similar change in the slope angle of a red blood cell
path in a space–time diagram in the high velocity range which is
inherent to both algorithm-based and manual measurements.
Third, good correlations among algorithm-based, space–time-
diagram-derived and manual analysis, subjectively classified FCD
and PPV and the finding of similar decreases in FCD and PPV
throughout the induction of septic shock further support the
relationship found between automated and manually derived
FCD and PPV. It remains to be determined in future studies
whether this relationship and the differentiation of subjective MFI
score groups by space–time-diagram-derived RBCv are observed
for examinations of the microcirculation that are obtained in
other settings. Considering all four categories of the per capillary
MFI score20, RBCv did not differentiate between MFI score
categories 2 (intermittent flow) and 3 (sluggish flow). Thus, the
receiver operating characteristics area under the curve for the
identification of capillaries with subjectively classified normal
flow (MFI 3) was greater than for the identification of capillaries
considered perfused by the consensus definition (MFI 2–3)9. In
the future, the algorithm may be extended to account for a
continuum of changes in the red blood cell path velocity
throughout a space–time diagram. The effect of this finding on

the determination of capillary perfusion state by the algorithm is
mitigated by the use of velocity density distributions of red blood
cell paths within individual capillaries instead of a single RBCv
cutoff value. The benefit of quantitative RBCv measurement
in comparison to a subjective qualitative score is apparent across
the initiation of cardiopulmonary bypass, where the added
extracorporeal circulation was demonstrated to increase RBCv,
whereas in the cardiopulmonary-stable patients who were
entering elective surgery, the qualitative microvascular flow was
normal at both timepoints. A potential source of noise in the
algorithm-determined FCD, PPV, and RBCv parameters was
infrequent as indicated by the small amount of false-positively
recognized capillaries that did not yield meaningful red blood cell
paths in the space–time diagram. The close correlation of these
parameters between algorithm-based and manual measurement
suggests that most of these red blood cell paths were correctly
recognized by the algorithm as artifacts, and thus ignored.

We identify four fundamental advantages of automated
microcirculatory image analysis: For the first time to our
knowledge, the objective analysis of HVM image sequences can
be separated from inter- and intra-operator variability during the
analysis stage. Second, it introduces a quantitative measure of
RBCv, which has the potential to replace previous qualitative and
subjective parameters. Third, via systematic analysis of the posi-
tion and movement of every single red blood cell that is within
the field of view, a data-driven approach is introduced into HVM
image sequence analysis, which enables the calculation of new
parameters, such as the capillary blood volume (unit mm3mm−2)
and capillary blood flow (unit mm4 s−1 mm−2) within the field of
view, that may more closely reflect the microcirculatory delivery
of oxygen than previous parameters, as requested by the second
consensus on the assessment of sublingual microcirculation in
critically ill patients9, and potentially renders the obtained para-
meters more robust to noise. An expansion of the algorithm
based on its ability to recognize capillaries and track red blood
cells could further be utilized in the future to measure capillary
hematocrit, thus enabling measurement of delivery of hemoglo-
bin (unit mm4 s−1 mm−2). Using novel hardware to optically
measure hemoglobin oxygen saturation would then allow for
direct measurement of microcirculatory delivery of oxygen, a
modality providing a physiological parameter of high clinical
relevance. Finally, the technical prerequisites for clinical use of
HVM are fulfilled by the combination of the demonstrated
reliability of the automated analysis, complete independence from
user intervention, and analysis speed approximately three times
faster than real time using medium-range off-the-shelf computing
hardware. For the first time to our knowledge, investigator-
independent point-of-care analysis of the sublingual micro-
circulation may become feasible, resolving one of the main current
concerns regarding microcirculation-targeted resuscitation32–34

aimed at titrating therapy that targets resolution of micro-
circulatory alterations associated with conditions of shock.

The software, as currently implemented, has two main lim-
itations: First, the parameters of the algorithm may need to be
adjusted for the analysis of HVM image sequences according to
the species, tissue type, and type of camera used for recording,
e.g., sidestream dark field or orthogonal polarization spectral
imaging instead of the incident dark field image system for which
the present software was developed here. This limitation is a
direct consequence of the highly specialized nature of the algo-
rithm, in contrast to a more generalized application of advanced
computer vision that could adapt more flexibly to various types of
input, and results in a highly specific relationship between the
input and output and the promotion of consistent and highly
reproducible results, as desired for scientific applications. Second,
within the workflow for assessing microcirculatory parameters for
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research and clinical use, quality control of HVM image sequence
data is of central importance. Automated quality assessment of
image sequences must be implemented in the future at a point-of-
care setting, using currently available criteria, such as Massey’s
score35, as suggested by the current consensus9, or a novel system
that could be adapted to the requirements of automated analysis.
Such an approach to automatically assess the quality of images
will require not only an automated identification of content,
focus, and pressure artifacts but will also need to balance the
analyzable image sequence length versus the stability and con-
secutively, field of view. Regarding the latter, for the validation of
the current software high-resolution HVM image sequences
recorded with the incident dark field technique were converted to
AVA 3.2 format to enable direct comparison to the current gold
standard. This step, imposed by the AVA 3.2 software, required a
reduction of the field of view and resolution. In future studies, the
proposed software will enable the use of the full field of view and
resolution of any HVM image sequences for analysis. Further,
even though the red blood cell velocities that may be measured
using space–time diagrams and the currently available hardware
are within the physiological range in most cases, it cannot be
excluded that the actual velocity of some red blood cells exceeds
this limit. This may be counteracted by increasing the frame rate
in future HVM microscopes. Future studies could further explore
differences in the sensitivity and precision of the methodology
proposed in the current study by comparing the proposed algo-
rithm to other techniques for measuring RBCv than space–time
diagrams36,37, and validate the algorithm in large clinical datasets.

In conclusion, our proposed advanced computer vision algo-
rithm has been demonstrated to reliably measure TVD, FCD, and
PPV in HVM image sequences of the sublingual microcirculation
with less than 10% error compared to manual analysis. In addi-
tion, we have demonstrated a consistent relationship between the
subjective qualitative analysis of capillary perfusion state and the
space–time-diagram-based absolute RBCv, thereby enabling the
comparison of algorithm-based FCD and PPV with previous
literature according to the current 2018 consensus. For the first
time to our knowledge, it is possible to systematically quantify the
displacement of red blood cells in HVM image sequences and
analyze the velocity density distributions. Hence, our algorithm
may pave the way towards real-time bedside analysis of the
microcirculation and the development of novel parameters that
more closely reflect the determinants of microcirculatory delivery
of oxygen and discern patterns of microcirculatory heterogeneity
that are induced by diseases such as sepsis. Use of the algorithm
in conjunction with HVM in preclinical settings allows the
application of information regarding microcirculatory alteration
to be translationally applied to parallel clinical settings. In this
way, assessment of microcirculatory function may complement
point-of-care evaluation of disease severity and treatment
response and ultimately be used as a target to counteract
microcirculatory alterations that are known to be associated with
adverse clinical outcome.

Methods
Input data, image enhancement, and development methodology. The proposed
algorithm accepts microcirculatory image sequences of adequate quality as input
(Fig. 1). HVM image sequence quality may be assessed according to the current
consensus9 using Massey’s scoring system35, with a Massey score <10 considered
adequate for analysis. Differences in image capture sensors and optical systems
among discrete HVM devices (e.g., the Cytocam incident dark field HVM device,
Braedius Medical, Huizen, The Netherlands; the Microscan sidestream dark field
HVM device, Microvision BV, Amsterdam, The Netherlands; the Capiscope
sidestream dark field HVM device, KK technology, Devon, United Kingdom, etc.),
and routinely applied conversion procedures from one video/image format to
another influence not only the resolution but also the pixel pitch, which determines
the transformation of measured parameters to real-world units. Thus, the video/
image file type is determined by the software based on the properties of the discrete

HVM devices and the video/image format (Supplementary Table 1). Once the
video/image sequence type has been identified, conversion factors that were
determined using calibration images that were acquired with a calibration device
are applied. This procedure may be repeated for upcoming combinations of HVM
devices and video formats. Then, image sequence stabilization is performed using
the calculation of optical flow for a sparse feature set via the iterative Lucas–Kanade
method with pyramids38, thereby resulting in an affine transformation with
translation, rotation, and scaling components that is applied to each frame in
sequence after trajectory smoothing. Stabilization artifacts, such as moving black
borders and reduced or variable frame size, are accounted for by cropping and
automatically adjusting the of field of view, respectively. The software that
implements the proposed algorithm was written in native C++ and adheres to the
C++17 specification found in ISO/IEC 14882. The core code base consists of
approximately 7000 lines of code, which are maintained using git 2.19.1, and links
to OpenCV, which is an open-source advanced computer vision library21. The
National Library of Medicine Insight Segmentation and Registration Toolkit39 is
used to import microcirculatory image sequences that have been recorded using
earlier software. Parallel processing is realized using the GNU parallel software
package. The software, along with the OpenCV 3.4.3 and ITK 4.13.1 libraries, were
compiled using CMake 3.10.2 and g++ 8.2.0 on Linux 4.18.0. All HVM image
sequence analysis in the present study was performed on a system that was running
Ubuntu Linux 18.04 and was equipped with 32 GB of random-access memory and
a six-core Intel 8700K central processing unit with the capability of processing
twelve concurrent threads.

Vessel recognition. The mean gray scale values of the corresponding pixels across
all frames contained in the stabilized image sequence are used to generate a mean
image. Then, the mean image is used for multiple passes of vessel recognition: the
first pass is used to detect vessel structures of diameter up to approximately 20–30
μm, which are classified as capillaries, and the second pass to detect vessel struc-
tures of diameter up to approximately 400 μm, which are classified as venules. In
each pass, contrast-limited adaptive histogram equalization is applied to the mean
image by deriving gray-level assignment at each given position via bi-linear
interpolation of the gray-value distributions in the surrounding contextual regions
according to the following formula:

s′ ¼ 1� yð Þ 1� xð Þ gA sð Þ þ x gB sð Þð Þ þ y 1� xð Þ gC sð Þ þ xgD sð Þð Þ;
where s is the grayscale value of the pixel in question, gA–D are the grayscale values
at the corners of the boundary rectangle of the surrounding contextual region, and
x and y are normalized distances with respect to point A. Additionally, the slope of
the brightness histogram that is associated with the gray-level assignment is limited
to prevent the amplification of noise. The procedure is described in more detail
elsewhere40. Then, a modified principal-curvature-based region detection algo-
rithm for unbiased detection of curvilinear structures, which was initially described
by Steger41, is then used for vessel detection. The algorithm combines convolution
of the contrast-enhanced time-based mean image with first- and second-derivative
Gaussian kernels and an orientation-based linking algorithm. The second-
derivative Gaussian kernel is expressed by the following formula:

g′′σ xð Þ ¼ x2 � σ2= 2πð Þ�1=2 σ5
� �

e�x2= 2σ2ð Þ;

where σ represents the kernel’s standard deviation, which mainly determines the
properties of the linear structures that are recognized by the full algorithm41. A
linking algorithm then analyzes the distance between the respective convolution
line locations and the angle difference of the two points (parameters h and l, see
Supplementary Table 2). Finally, this algorithm identifies the discrete vessel
structures, which are described by a centerline and for each point therein, the
direction of the normal vector and the vessel diameter. The algorithm’s effective-
ness for vessel recognition in HVM image sequences is based upon two principles:
First, it targets the detection of curvilinear structures such as capillaries and
venules. Second, the use of model-line-profile scale-space behavior analysis sub-
sequent to kernel convolution effectively counteracts differences in contrast levels
on both sides of the vessel structures that arise from spatial variability of tissue
properties, lighting, or superimposition with other structures. The parameters that
are used in the vessel detection algorithm are listed in Supplementary Table 2.
Then, the results of each vessel detection pass are then superimposed onto one
another while eliminating overlapping structures, thereby yielding a final vessel
map that contains a centerline and, for each line point, the vessel diameter.

Space–time diagram-based RBCv estimation. Before a space–time diagram is
generated for each capillary, differences in brightness and contrast in between
frames of the image sequence are eliminated by applying of brightness histogram
equalization, followed by Gaussian smoothing, to each individual frame. Then,
columns of pixels are read out along the centerline of each capillary from each
frame and appended horizontally. Prior to further processing, brightness histogram
equalization is applied again to each space–time diagram. In this way, space–time
diagrams are generated for all vessels in the field of view, which are subsequently
used to measure the motion of individual red blood cells within the field of view24.
The same principal-curvature-based region detection algorithm is applied to each
space–time diagram as for vessel recognition. The resulting centerlines represent
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the paths of individual red blood cells along the space–time axes, with the mean of
its first derivative with respect to time representing RBCv for an individual red
blood cell path. Paths are classified as artifacts and discarded based on three
criteria: they are discarded if their length is below a minimum path length, if the
ratio of length of a straight line between the start- and endpoints of the path and
the actual path length—which is called the curvature index—is below a specified
cutoff, or if RBCv exceeds the maximum detectable RBCv, which depends on the
length of the vessel (l; μm) and the frame rate of the video/image sequence (f; s−1)
and is expressed as

vmax ¼ 3�1 l f μm s�1
� �

as previously described15. The remaining red blood cell paths are classified as
low flow or normal flow based on a species-specific critical RBCv cutoff value
(low_flow_cutoff, see Supplementary Table 2). Then, the vessel RBCv is derived
as the mean RBCv of all red blood cell paths within one space–time diagram,
whereas the same principle is applied to capillaries and venules, as was
demonstrated previously13. Vessels are classified as perfused if the proportion of
normal-flow red blood cell paths in a per-vessel density distribution lies above 2σ
of a fitted normal distribution (>95%), whereas density distribution-based vessel
perfusion classification is used to increase the robustness to red blood cell path
artifacts as compared to the simple application of the RBCv cutoff to the vessel
RBCv (see Fig. 1).

Elimination of confounders in space–time diagram analysis: Space–time
diagrams are susceptible to several confounders. First, in manually assisted
generation of space–time diagrams small deviations in the vessel centerline are
inevitably introduced during manual drawing. Such deviations can introduce noise
into space–time diagrams that are generated from the pixels along the vessel
centerline and can be minimized using automated vessel recognition. Second,
because they rely on the composition of the pixels that are extracted from all
consecutive frames, differences in brightness between frames (flickering) may
introduce marked vertical stripes characteristics into space–time diagrams that are
produced without further image processing, e.g., by the AVA 3.2 software
(Fig. 3a–d, top- and bottom-left images)17. Flickering may originate from technical
limitations of recording equipment, such as an undesired rapid change in exposure;
non-stationary illumination brightness; or by changes in the blood flow in the
background. Frame-by-frame optimization, as performed by the proposed
algorithm, effectively eliminates these artifacts, thereby avoiding contamination of
detected red blood cell paths by these artifacts and enabling optimal red blood cell
transit time recognition (Fig. 3a–d, top- and bottom-right images). Third, above
the upper limit of detection of RBCv, which is determined by the vessel length and
the frame rate, it is difficult to distinguish non-moving red blood cell paths from
artifacts since both may present themselves as near-horizontal lines. In this case,
non-moving red blood cell paths are classified as such if the red blood cell paths
below a cutoff velocity make up more than 2σ of a fitted normal distribution
(>95%) of all detected red blood cell path velocities within the same vessel;
otherwise, they are classified as artifacts. If this cutoff has been reached in a vessel,
the vessel is considered non-perfused regardless of the velocity of a minority of red
blood cell paths that are contained therein. In this way, the “barcode sign”
space–time diagram configuration of a capillary with no flow (Fig. 3d) is reliably
recognized.

Output parameters and formats. Parameters for all detected structures are
written to three human- and machine-readable files that contain the results for
each image sequence, vessel and red blood cell path, enabling further analysis on a
per-field of view, per-vessel, or per-red blood cell basis. The calculated parameters
are listed in Table 1. The stabilized video/image sequence file is written to file using
the HFYU lossless codec; visualizations of detected vessels, space–time diagrams,
and individual RBC paths may be written to image files using the PNG lossless
codec (ISO/IEC 15948).

Validation of the algorithm. Validation of vessel recognition: In a porcine model of
septic shock, 17 female pigs (crossbred Landrace × Yorkshire, 3–4 months old)
were divided into a septic shock group (n= 10) and a control group (n= 7). In the
former group, sublingual HVM image sequences were recorded with a Cytocam
HVM device before and after induction of septic shock (mean arterial pressure <60
mmHg or serum lactate >2.0 mmol l−1) using intravenous infusion of lipopoly-
saccharide (LPS; Escherichia coli LPS 026:B6; Difco Laboratories, Detroit, MI) at 2
μg kg−1 h−1 and 1 h after normalization of the mean arterial pressure via fluid
resuscitation. Data obtained from the experiments have been described else-
where25. Septic shock was defined as a mean arterial pressure <60 mmHg or serum
lactate >2.0 mmol l−1. In the control group, the experiment was performed without
the administration of LPS. The study was conducted with permission from the local
animal experimental committee (EMC3379 142-14-01) and in strict accordance
with the National Guidelines for Animal Care and Handling. For gold-standard
measurements of TVD, FCD, and PPV, all HVM image sequences were manually
analyzed using AVA 3.2 software by a single, experienced operator in a blinded
manner25. Then, these measurements were compared to the results of a fully
unattended, algorithm-based analysis. In an additional step, all vessels that were
detected by the algorithm were electronically superimposed onto the image
sequences, thereby enabling manual identification of all false-negative and false-

positive vessel segments according to the operator’s judgment, as in the manual
analysis using the AVA 3.2 software. The false-negative and false-positive TVD
values were calculated by normalizing the total length of all false-negative and
false-positive capillaries by the field of view. The dataset including the sublingual
microcirculation analyzed using the AVA 3.2 software has been previously pub-
lished elsewhere25.

Space–time diagram-based RBCv and capillary perfusion: The calculations of
FCD and PPV according to the current consensus are based on capillary perfusion
state classification according to the per-capillary MFI9,42. To examine the
relationship between this subjective semi-quantitative analysis and the space–time-
diagram-derived RBCv, between 5 and 20 capillaries were randomly selected from
HVM image sequences that were obtained in the septic shock group. The
capillaries’ centerlines were manually drawn in the AVA 3.2 software to match the
lengths and positions of capillaries that were identified by the algorithm. These
capillaries were manually graded using the MFI score (0: no flow, 1: intermittent
flow, 2: sluggish flow, and 3: normal flow)18 and classified as non-perfused (MFI
score 0–1) or perfused (MFI score 2–3) according to the current guidelines9,42.
Then, space–time diagrams were generated using AVA 3.2 and three to five red
blood cell paths were manually identified in each space–time diagram, whereas the
manually measured capillary RBCv was calculated as the mean slope of all RBC
paths. An analysis of 202 manually generated space–time diagrams that were
obtained in this way was correlated to a fully unattended, algorithm-based
space–time diagram analysis. The predictive values of the manual and algorithm-
based space–time-diagram-derived RBCv values for subjective MFI scoring in the
same capillaries were evaluated. Representative examples of automatically
generated space–time diagrams and red blood cell path detection are presented for
capillaries with normal flow (Fig. 3a), “hyperdynamic” flow (Fig. 3b), intermittent
flow (Fig. 3c), and no flow (Fig. 3d).

Clinical dataset: Sublingual HVM image sequences were recorded at three
differing sublingual locations in 11 patients who were undergoing elective coronary
artery bypass surgery (38% male, age 59 ± 11 years, weight 78.6 ± 3 kg, and height
1.7 ± 0.1 m) both after induction of anesthesia and again after initiation of
cardiopulmonary bypass. On the day of surgery, anesthesia was induced via bolus
application of midazolam (50 μg kg−1 i.v.), fentanyl (30 μg kg−1 i.v.), and
pancuronium (2 mg kg−1 i.v.). Then, cardiopulmonary bypass, primed with a
colloid solution (HES 130/0.4; Fresenius Kabi, Bad Homburg, Germany), was
initiated. HVM image sequences were graded in terms of quality using Massey’s
scoring system35 and selected for analysis if the Massey score <10. The study was
conducted with permission from the institutional Ethics Board of Acibadem
University (ATADEK 2014/723) and after obtaining informed consent
preoperatively from each patient.

Statistics and reproducibility. TVD, FCD, and the RBCv values of individual
capillaries as measured manually and with the algorithm were compared using
a linear correlation that employed Pearson’s product-moment correlation
coefficient alongside Bland–Altman analysis43 with percentage error analysis44.
In the septic shock group, all manually measured and algorithm-derived
microcirculatory parameters were compared at the baseline, septic shock, and
resuscitation timepoints, respectively, before and after the initiation of cardio-
pulmonary bypass, using linear mixed-effect model analysis45. The effects in
question were entered as fixed effects, and intercepts for subjects and per-subject
random slopes representing the effect on the dependent variables were entered as
random effects. P values were calculated using a likelihood ratio test of the full
model with the effect in question against a “null model” that lacks the effect in
question46. P values for individual fixed effects were obtained via the Sat-
terthwaite approximation47. The predictive value of the perfusion state of
capillaries according to MFI classification by the space–time-diagram-generated
RBCv was examined using receiver operating characteristics analysis and cal-
culation of the area under the curve. A two-sided p < 0.05 was considered sta-
tistically significant. Reproducibility was ensured by providing the dataset that
supports the conclusions of this article in the Zenodo repository48, and utilizing
a fully scripted data management pathway within the R environment for sta-
tistical computing, version 3.4.1. Receiver operating characteristics analysis was
performed using the R library plotROC version 2.2.1. Graphical output was
generated using the R library ggplot2, version 2.2.1. Values are specified as the
mean ± standard deviation (SD).

Ethics approval. Study of the porcine model of septic shock was conducted with
permission from the local animal experimental committee (EMC3379 142-14-01)
and in strict accordance with the National Guidelines for Animal Care and
Handling. Patient data during cardiac surgery were recorded with approval of the
institutional Ethics Board of Acibadem University (ATADEK 2014/723).

Consent to participate and consent for publication. Informed consent from each
patient was obtained preoperatively.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The dataset that supports the conclusions of this article, encompassing microcirculatory
parameters on an individual subject level that were used for validation of the algorithm in
the experimental and clinical settings, is available in the Zenodo repository48. All other
data are available from the corresponding author on reasonable request.

Code availability
MicroTools source code is available via the github software version control repository.
The repository has been uniquely identified and archived in the Zenodo repository49. The
code is published under the GPLv3 licence. For further availability of the software in the
future, see https://microcirculationacademy.org.
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