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Somatic mutation detection and classification
through probabilistic integration of clonal
population information
Fatemeh Dorri1, Sean Jewell2, Alexandre Bouchard-Côté3 & Sohrab P. Shah 4,5,6

Somatic mutations are a primary contributor to malignancy in human cells. Accurate

detection of mutations is needed to define the clonal composition of tumours whereby clones

may have distinct phenotypic properties. Although analysis of mutations over multiple

tumour samples from the same patient has the potential to enhance identification of clones,

few analytic methods exploit the correlation structure across samples. We posited that

incorporating clonal information into joint analysis over multiple samples would improve

mutation detection, particularly those with low prevalence. In this paper, we develop a new

procedure called MuClone, for detection of mutations across multiple tumour samples of a

patient from whole genome or exome sequencing data. In addition to mutation detection,

MuClone classifies mutations into biologically meaningful groups and allows us to study

clonal dynamics. We show that, on lung and ovarian cancer datasets, MuClone improves

somatic mutation detection sensitivity over competing approaches without compromising

specificity.
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Genomic accumulation of somatic point mutations, or
single nucleotide variants (SNVs), can disrupt the regular
activity of cells and result in cancer initiation and pro-

gression. Collectively, the complete repertoire of SNVs across a
cancer genome (numbering in the thousands) form a statistically
robust marker for inferring clonal populations and studying
tumour evolution. As such, accurate detection of all somatic
SNVs, including those with low prevalence, is vital as they can
define clones with phenotypic properties of interest. Mechanistic
association of specific clones with properties such as treatment
resistance, metastatic potential, and fitness under therapeutic
selective pressures remains a key objective of biomedical inves-
tigators studying tumour progression.

Phylogenetic analysis can encode the evolutionary lineage of
tumour cells across time and anatomic space1–7. Sequencing of
multiple samples of a cancer to reconstruct evolutionary patterns
and drug response profiles are increasingly common. For exam-
ple, in rapid autopsy programs, at the time of a patient’s death,
tens to hundreds of metastatic samples are collected for future
study8,9. Recent multi-sample sequencing studies in renal, lung,
ovary, breast, colorectal, and other cancers have revealed striking
evolutionary and clinically important properties of
cancers5,7,10,11. However, the analytical methods to detect
mutations from such experimental designs are still immature, and
few studies have leveraged shared statistical strength across
samples to detect mutations with greater sensitivity.

In the limit case, all cells likely harbour unique genomes,
however due to the nature of branched evolutionary processes,
clones can be coarsely modelled as major clades in the cell lineage
phylogeny of a cancer. These clades share the majority of
mutations, and therefore define first approximations to the gen-
otypes of clones. Clonal genotypes and their relative abundances
in the cancer cell population can be approximated by clustering
mutations measured in bulk tissues and estimating their cellular
prevalences (the variant tumour cell fraction)12,13.

Phylogenetic algorithms mostly use mutations (represented as
binary genetic markers), as inputs to infer the branched evolu-
tionary lineages of tumour cells14,15. Thus, mutation detection
accuracy will ultimately impact the performance of phylogenetic
inference algorithms.

Detection of low prevalence mutations is a major challenge due
to typically small signal to noise ratios, owing to: (i) con-
tamination by normal cells; (ii) genome copy number alteration;
and (iii) the presence of mutations in only a small fraction of
tumour cells (intra-tumour heterogeneity). In this work, we
illustrate that knowledge of the clonal population structure
improves detection of mutations defining low prevalence clonal
genotypes.

Although SNV calling algorithms are ubiquitous in the litera-
ture, it remains challenging to detect low prevalence mutations.
Algorithms have been developed for calling mutations from a
single sample16,17, paired (matched normal and tumour) sam-
ples18–22, or multiple samples23,24. We list several popular algo-
rithms. Mutationseq uses a feature based classifier for calling
mutations20, where the features are constructed from matched
paired normal and tumour samples. Strelka is a method for
somatic SNV and small indel detection from sequencing data of
matched normal and tumour samples18. It is based on a Bayesian
approach that uses normal and tumour samples’ allele frequencies
with normal expected genotype structure. MuTect uses a Bayesian
classifier that employs various filters to ensure high specificity to
detect mutations from matched normal and tumour samples21.
FreeBayes uses short read alignments to call the most likely
genotypes for the population at each position. It can be run in
single mode using only one tumour sample or in multiple mode
utilizing multiple tumour samples from the same patient25.

FreeBayes can detect somatic mutations if germlines are manually
removed. MultiSNV jointly analyses all available samples under a
Bayesian framework to improve the performance of calling
shared mutations23. SNV calls from GATK26 are refined and
corrected by using phylogeny information across multiple
samples24,27.

In our proposal, MuClone, we exploit prior knowledge of
tumour content, tumour cellular prevalence, and copy number
information across multiple samples to improve detection of
somatic SNVs, and in particular, low prevalence ones. Our model
uses mutation clusters and copy number information obtained
from standard approaches28,29. In the first step, a set of stringent
SNV calls or validated SNVs (using targeted sequencing data) is
used to infer mutation cluster information. Then, MuClone uses
the inferred cluster information to more accurately call mutations
across genome (whole genome or exome sequencing data). In
addition to calling mutations, MuClone also classifies mutations
into clusters based on cellular prevalence. This provides the user
with the opportunity to profile mutation changes across time and
space, and adds a rich layer of interpretation into the detection
process.

We test MuClone through simulation studies and an applica-
tion to real, multiple sample, patient data. These experiments
reveal that incorporating the cellular prevalences of different
clusters improves accuracy. Moreover, in real data, MuClone
exhibits higher sensitivity (true positive rate or recall) in detecting
mutations without compromising specificity (true negative rate)
compared with other methods.

Results
Synthetic data. In this section, we examine the performance of
MuClone on simulated data. In what follows, we generate N loci
from M samples with K underlying tumour mutation clusters
with sequencing error rate ϵ and tumour content tm.

We first randomly generate an evolutionary relationship
between clusters, viewed as a binary phylogenetic tree. Each
node in the tree represents a mutation cluster. The root node
represents the ancestral cluster. For each sample, the cellular
prevalence of the first descendant, ϕ1st , is sampled from a
Uniform distribution over [0, ϕparent], where ϕparent is the cellular
prevalence of the parent node (cluster). The cellular prevalence of
the second descendant, ϕ2nd , is sampled from a Uniform
distribution over ½0; ϕparent � ϕ1st �, defined so that the sum of
the children’s prevalences do not exceed their parent’s cellular
prevalence. The absence or presence of each cluster, in each
sample, is sampled from a Bernoulli distribution that assigns
equal probability to both outcomes. If a cluster is not present in a
sample, the corresponding cellular prevalence will be 0. See
Supplementary Fig. 1 for an example of this process. Loci
are assigned to a cluster uniformly at random from {0, …, K},
where cluster 0 represents the wildtype cluster and {1, …, K} are
mutation clusters. For each locus, in each sample, the number of
reads overlapping the locus (depth) is sampled from a Poisson
distribution with mean dm. Wildtype copy number is determi-
nistically set to 2, and a copy number profile (major and minor
copy number) is generated according to the following steps:
The total copy number, Ct, is sampled uniformly at random from
{1, …, Cmax}. An integer number, Cb, is randomly (following a
discrete Uniform distribution) picked from 1 to Ct, and Ca is
defined as Ca= Ct− Cb. Lastly, the major copy number is set to
the maximum of Cb and Ca; the minor copy number is set to the
minimum of those two values. Then, corresponding to each
cluster, the number of variant reads are sampled from the Beta-
Binomial distribution described in Eq. (7) with precision
parameter equal to 1000.
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Synthetic data evaluation. We simulated 10 synthetic data for
20,000 loci from 4 samples of a patient, with 5 underlying clus-
ters, including an ancestral cluster. The maximum copy number
was 5, and the error rate was 0.01. The average sequencing depth
was assumed to be 100 for all samples.

To assess the performance and robustness of MuClone, we
systematically shielded MuClone from clonal information (Fig. 1).
In particular, the cellular prevalence information was perturbed
by (i) adding noise to its value, or (ii) removing the cellular
prevalence information of the clusters. The noise was generated
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Fig. 1 MuClone's performance with inaccurate clonal information: 10 synthetic datasets generated for 20,000 loci, from 4 samples of a hypothetical
patient, with 5 underlying clusters. The maximum copy number is 5, error rate is set to 0.01, and average sequencing depth is approximately 100. To assess
performance, we add noise from a mean zero normal with standard deviation equal to 0 (dark purple), 0.01 (light purple), 0.1 (light blue), and 0.2 (dark
blue) to the cellular prevalence and also remove the clonal information of different number of clusters. a Sensitivity and b Specificity of MuClone with
parameters: wildtype prior= 0.5, ΦT= 0.02, error rate= 0.01, tumour content= 0.75, and precision parameter= 1000
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Fig. 2 MuClone’s performance as a function of wildtype prior: 10 synthetic datasets generated for 20,000 loci, from 4 samples of a hypothetical patient,
with 5 underlying clusters. The maximum copy number is 5 and the error rate is set to 0.01, and average sequencing depth is approximately 100. We
assess the performance for ΦT equal to 0.001 (dark purple), 0.01 (light purple), 0.02 (white smoke), 0.03 (light blue), 0.04 (dark blue). a Sensitivity and
b Specificity of MuClone with parameters: error rate= 0.01, tumour content= 0.75, and precision parameter= 1000
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from a normal distribution with mean zero and standard
deviations: 0, 0.01, 0.1, and 0.2. The noise value, ν, was added
to the cellular prevalence of the cluster, while bounding the
resulting value between 0 and 1, that is,

ϕ�zm ¼ min maxðϕzm þ ν; 0Þ; 1� �
;

where ϕ�zm and ϕzm are the perturbed and original cellular

prevalence of cluster z and sample m, respectively. The clusters
which their clonal information was removed, were randomly
chosen with equal probabilities. As expected, both sensitivity and
specificity were highest with complete and accurate clonal
information; see Fig. 1. This suggests that incorporating clonal
information can improve mutation detection accuracy and gives
evidence to support MuClone’s approach. Furthermore, since the
sensitivities were only marginally impacted by adding noise to the
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Fig. 3 MuClone’s performance as a function of tumour content: 10 synthetic datasets generated for 20,000 loci, from 4 samples of a hypothetical patient,
with 5 underlying clusters. The maximum copy number is 5, and average sequencing depth is approximately 100. We assess the performance for error rate
equal to 0.001 (light purple) and 0.01 (light blue), and tumour content from 0.1 to 0.99. a Sensitivity and b Specificity of MuClone with parameters:
wildtype prior= 0.5, ΦT= 0.02, and precision parameter= 1000
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Fig. 4 MuClone’s performance as a function of different depth: 10 synthetic datasets generated for 20,000 loci, from 4 samples of a hypothetical patient,
with 5 underlying clusters. The maximum copy number is 5, error rate is set to 0.01 and average sequencing depth is approximately 100. a Sensitivity and
b Specificity of MuClone with parameters: wildtype prior= 0.5, ΦT= 0.02, error rate= 0.01, tumour content= 0.75, and precision parameter= 1000
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clonal information, MuClone should be able to cope with modest
misspecification of the prior. However, specificity can decrease if
the cellular prevalence is reduced to levels associated with the
wildtype cluster and sensitivity can improve if adding noise
increases the cellular prevalence to levels associated with a
removed mutation cluster.

Naturally, accuracy is most severely impacted with reduced/
corrupted clonal information; see Fig. 1. For the modest level of
noise (noise standard deviation 0 and 0.01), the sensitivity and
specificity of removing various numbers of clusters were
compared through a Kruskal–Wallis test (4e−5 ≤ p-values ≤
1e−4) which shows that the change in performance due to
clonal information is significant. In noiseless settings, the
confidence interval for the difference (of zero and four removed
clusters) in mean sensitivity and specificity are [0.16, 0.26] and
[0.08, 0.32], respectively. When the noise standard deviation is
equal to 0.01, these intervals are [0.11, 0.21] and [0.09, 0.36].

We also explored how sensitivity and specificity change as a
function of the wildtype prior and the threshold ΦT used to
distinguish the cellular prevalence cutoff of a mutation cluster. In
Fig. 2, we tested MuClone with wildtype prior values 0.5, 0.75, and
0.99, and with ΦT values 0.001, 0.01, 0.02, 0.03, and 0.04. In the case
that the wildtype prior equals 0.5, we assumed that a locus is equally
likely to be a mutation or not (when no other information is
provided). MuClone’s sensitivity and specificity are near 1 for ΦT

equal to 0.02 and wildtype prior equal to 0.5. As expected, with
small values of ΦT, the sensitivity and specificity decrease since it is
difficult to distinguish between wildtypes and mutations with small
cellular prevalences. The sensitivity also decreases for large values of
ΦT because mutations are miscalled as wildtypes. When the error
rate was 0.01, and wildtype prior was 0.5, the optimal ΦT was about
0.02. We used these values for the following experiments.

The performance of MuClone was tested with various tumour
content (from 0.1 to 0.99) and different error rates (0.01 and
0.001); see Fig. 3. For samples with tumour content greater than
0.5, the sensitivity and specificity remain close to 1. Sensitivity
and specificity decreased to only about 0.9 when the tumour
content in the sample is as low as 0.1. These results establish

promising performance over different ranges of tumour content
with different error rates (likely scenarios in real data).

In addition, we also explored the performance of MuClone for
samples with different coverage (mean depth): 30, 60 and 100; see
Fig. 4. Intuitively, the performance is higher when we have more
coverage. Since MuClone leverages cellular prevalence informa-
tion to improve the performance of mutation detection, the
performance gain is noticeable when the variant allelic ratio
resolution supports the given cellular prevalence resolution (in
our analysis the cellular prevalence of mutations is greater than
0.02).

Figure 5 demonstrates how well mutations are classified by
MuClone. The input clonal information was perturbed by adding
noise from zero mean normal distribution with standard
deviation 0.01 to simulate a more realistic scenario. In Fig. 5a,
each bin (i, j) shows the fraction of mutations in cluster i that are
classified into cluster j by MuClone. Figure 5a shows that 85% of
mutations are classified into the correct cluster.

In order to show that the classification errors occurred between
clusters with small phylogenetic distance, we define a misclassi-
fication index to quantify phylogenetic distance; calculated as

Misclassification index ¼
P

i≠j qði;jÞ ´
distði;jÞ�distmin

i

distmax
i �distmin

iP
i≠j qði;jÞ

; ð1Þ

where q(i,j) is the number of mutations in cluster i that are
classified into cluster j, and the Euclidean distance between the
cellular prevalences of cluster i and j is denoted by dist(i,j). The
distance of the closest and farthest cluster to cluster i is denoted
by distmin

i and distmax
i , respectively. In Fig. 5b, small misclassifica-

tion indices demonstrate that misclassified mutations occur
between close clusters. This can be interpreted as phylogenetically
recently separated clusters.

Real data. Two real data sets with multiple samples for each
patient were used to evaluate the performance of MuClone. The
first data set was multiple whole genome sequencing data from 7
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Fig. 5 MuClone’s classification performance: 10 synthetic datasets generated for 20,000 loci, from 4 samples of a hypothetical patient, with 5 underlying
clusters. The maximum copy number is 5, error rate is set to 0.01. a Bin (i, j) shows the fraction of mutations in cluster i that are classified into cluster j by
MuClone. 85% of the mutations are classified correctly. b Misclassification index for 10 independent samples. MuClone with parameters: wildtype prior=
0.5, ΦT= 0.02, error rate= 0.01, tumour content= 0.75, and precision parameter= 1000
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patients with high grade serous ovarian cancer. The second data
set was multiple whole exome sequencing data from 8 patients
with non-small-cell lung cancer (NSCLC).

High grade serous ovarian cancer. We tested MuClone’s per-
formance on whole genome sequencing data (with depth 30x)
from multiple tumour samples surgically resected from high
grade serous ovarian cancer patients5. The samples were obtained
from different spatially distributed metastatic sites. Brief details
about the number of samples for each patient, sample sites
and the number of validated loci for each patient are shown in
Supplementary Table 1. Germline mutations were excluded from
the list.

The copy number, tumour purity, and mutation cluster
information for experimentally re-validated mutation status were
taken from the phylogenetic study of high-grade serous ovarian
cancer (see the supplementary note of the paper5). Mutation
clusters were estimated with PyClone12 on the deep targeted
sequencing data (>1000x coverage) from the same samples and in
three patients with accompanying single cell sequencing data (see
Table S16 in the phylogenetic study of high-grade serous ovarian
cancer paper5). Copy number and tumour purity estimates were
calculated with the TITAN software28. In order to eliminate
germlines, loci with variant nucleotides in the corresponding
normal sample were removed from the dataset. Then, the
performance of MuClone was benchmarked against Strelka18

(v2.0.15), MutationSeq20(v4.3.7), MuTect30, FreeBayes25

(v1.2.0-2), MultiSNV23 and naive MuClone. Naive MuClone is
a version of MuClone where no clonal information is provided
(that is, all mutations are from an ancestral cluster).

In Fig. 6, the performance of MuClone is compared with other
methods executed with default settings. For each patient, p, we
assessed performance by averaging Youden’s index, sensitivity,
and specificity across different samples. For patient p, with np
samples, these are calculated as

Sensitivityp ¼
1
np

Xnp
i¼1

Sensitivityip;

Specificityp ¼
1
np

Xnp
i¼1

Specificityip; ð2Þ

Youden's indexp ¼
1
np

Xnp
i¼1

Sensitivityip þ Specificityip � 1
� �

;

where Sensitivityip, Specificityip and Youden's indexip are the
sensitivity, specificity and Youden’s index of sample i and patient
p, respectively. In aggregate, MuClone outperforms other
methods by improving sensitivity without compromising speci-
ficity; see Fig. 6. False negatives arise mainly because the WGS
data is under-represented (the average depth of the WGS data is
about 30x) and lacks variant alleles that are present in the
targeted sequencing data. False positives arise due to erroneous
signal from sequencing technical artefacts.
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Fig. 6 Performance comparison of different methods on whole genome sequencing data from patients with high grade serous ovarian cancer. a Youden’s
index, b Sensitivity, and c Specificity across different mutation detection methods (from left to right: MuClone (dark blue), MultiSNV (orange), MuTect
(light blue), Naive MuClone (yellow), Strelka (purple), MutationSeq (brown), and FreeBayes (pink)). MuClone parameters are: wildtype prior= 0.5, ΦT=
0.02, tumour content= 0.75, error rate= 0.01, and precision parameter= 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

True cluster

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

P
re

di
ct

ed
 c

lu
st

er

0.00

0.04

0.08

0.12

0.16

Fig. 7 Classification of 153 mutations of patient 1 with high grade serous
ovarian cancer across 6 samples. Bin (i, j) shows the fraction of mutations
in cluster i that are classified into cluster j by MuClone. MuClone
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content= 0.75, and precision parameter= 1000. 93% of the elements are
diagonal
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In Fig. 6, Strelka, MutationSeq, MuTect and Naive MuClone
have lower performance as they do not incorporate information
across multiple samples. FreeBayes was run on multiple samples
and germlines were removed manually, but since the method only
considers tumour samples, it has the lower performance versus
other methods.

To assess the performance of MuClone and MultiSNV, we
conducted a two-sided t-test for the difference in the mean of
Youden’s index evaluated on mutation calls from MuClone and
MultiSNV. The 95% confidence interval is [0.03, 0.1], with p-
value equal to 0.0006; this shows that the difference is statistically
significant. Importantly, MuClone improves sensitivity, enabling
the detection of more mutations across the whole genome.

Figure 7 depicts the classification of mutations into clusters
relative to the ground truth, as defined by running PyClone on
the data (omitting singleton clusters5). Each bin (i, j) of Fig. 7

shows the fraction of mutations in cluster i that are classified into
cluster j by MuClone; 93% are correctly classified by MuClone.
Moreover, we notice that misclassified mutations are classified
into phylogenetically similar clusters (the misclassification index
for patient 1 was 0.015).

Non-small-cell lung cancer. We tested MuClone’s performance
on early-stage NSCLC samples from the TRACERx data set7. To
help obtain the clonal and subclonal census, multiple tumour
regions for each patient were sequenced by Illumina HiSeq. We
used the copy number, purity estimate, and the mutation
cluster information available in TRACERx study Supplementary
Material7. In the TRACERX study, the cellular prevalence was
calculated from the whole exome sequencing data on a set of
stringent mutations that were selected from MuTect and VarS-
can2 results with post-processing. In addition, the TRACERx
study added a few mutations to reduce missed subclonal muta-
tions; see Supplementary Appendix of TRACERx study7.

To compare the performance of MuClone with Strelka,
MultiSNV, and MuTect, we randomly selected 8 patients with
subclonal mutations from the TRACERx data set (see Table S2
Supplementary Appendix 1 of the paper7). The TRACERx study
generated a re-validated and curated list of mutations for their
analysis; see Supplementary Appendix 2 of TRACERx study7. The
mutations with full copy number information across all 8 patients
were used as ground truth to evaluate performance.

We evaluated the false negative rates of mutation calling across
several methods; see Table 1. Altogether, out of 7238 mutations,
MuClone missed 475 mutations while Strelka, MultiSNV and
MuTect missed 7205, 5720, and 1086 mutations respectively.

Table 1 Total number of false negative calls, across multiple
samples of non-small cell lung cancer patients, from
different mutation detection algorithms

Patient MuClone MultiSNV MuTect Strelka

CRUK0003 52 350 60 430
CRUK0004 16 188 36 240
CRUK0005 212 1736 236 2040
CRUK0013 26 490 270 540
CRUK0062 30 469 42 609
CRUK0063 75 445 40 510
CRUK0065 60 1902 342 2640
CRUK0094 4 140 60 196
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Fig. 8 Comparison of detected mutations from MultiSNV, MuTect, MuClone, and TRACERx on whole exome sequencing data from non-small cell lung
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Hence, borrowing statistical strength, as done in MuClone, across
samples likely increases sensitivity to real mutations.

We next ran MuClone, MultiSNV and MuTect on the whole
exome data from multiple samples of 8 patients to ascertain
specificity. We note that MuClone removes reads with mapping
quality less than 5 and for positions that have (i) a variant
nucleotide in a normal sample, (ii) more than 40% filtered
basecalls (A basecall is filtered if more than 3 mismatches occur
between the read and the reference within a window of 20 bases
on each side of the site.); or (iii) more than 75% of the reads that
cross the site have deletions in any of the samples18. For exome
sequencing data, mutations were called if the corresponding
MuClone mutation probability is greater than 0.9. The other
methods were executed with default settings. The total number of
calls and the number of common calls between different methods
(restricted to positions with copy number information) at the
patient level is depicted in Fig. 8. A high degree of variation across
callers is observed. Altogether, MuClone called 13,556 mutations
while MultiSNV and MuTect called 31,374 and 11,915,
respectively. MultiSNV output the largest number of calls in all
of the samples, while MuTect and MuClone output similar
number of calls. Figure 8 also demonstrates the mutations used in
the TRACERx study and their overlap with the mutation calls in
different methods. The set of mutations overlapping between
MuClone and TRACERx is most similar; this suggests that the
increase in sensitivity conferred by MuClone does not come at the
expense of specificity.

We also explored the performance of MuClone when clonal
information differs in the number of input clusters or the value of
the cellular prevalence; see Fig. 9. We perturbed the value of the
cellular prevalences (estimated by PyClone) by adding noise from
a mean zero normal distribution with different standard
deviations: 0, 0.01, 0.1, and 0.2. We see that MuClone is robust
to slight changes of cellular prevalence values. We also shielded
MuClone from different fractions of the clonal information and
that decreased the performance more than adding noise. In
general, this result shows that more accurate clonal information
provides better mutation detection.

Conclusion. We studied the use of clonal information for the
purpose of somatic mutation detection and classification in multi-
sample whole-genome sequencing data. The proposed statistical
framework uses the clusters cellular prevalences and copy number

information for detection and classification of low prevalence
mutations. Our proposal, MuClone, outperformed other popular
mutation detection tools, while providing the added benefit of
classifying whole genome sequencing mutations into biologically
relevant groups. Both synthetic and real data results showed that
using the cellular prevalences of tumour clusters can improve
mutation detection sensitivity. Importantly, our results suggest
improvement in sensitivity can be achieved without compro-
mising specificity.

Since the accuracy of detecting mutations can affect the
performance of phylogenetic analysis, we suggest improvement
from using MuClone will impact the field of multi-region
sequencing for cancer evolution studies. As the field matures,
we expect that the method presented here will be incorporated
into more analytically comprehensive modelling of whole genome
sequencing data when multiple samples are used to infer
properties of clonal dynamics. Next steps are in developing a
unified iterative algorithm that alternates between identifying the
phylogenetic structure of the constituent clones comprising each
tumour sample, and detection of mutations leveraging the new
phylogenetic structure.

As sequencing costs continue to decrease (e.g., with Illumina’s
NovoSeq platform), multi-sample whole genome sequencing of
tumours will continue to proliferate (e.g., rapid autopsy program)
as a viable experimental design. Thus, MuClone will be an asset in
the arsenal of analytical methods deployed to interpret evolu-
tionary properties of cancer and to gain insights into clonal
dynamics in time and space.

Methods
Description of MuClone. MuClone uses previously known cellular prevalence
information to improve mutation detection and classification. For each sample,
MuClone detects mutations from joint analysis of multiple samples. We encode
this process in a generative probabilistic framework to perform joint statistical
inference of multiple observations (from multiple samples) of the variant allele
counts of a mutation of interest. The inputs to the model are: the number of variant
reads, and the depth for a set of sequenced loci from multiple samples derived from
the same patient; a measure of allele-specific copy number at each locus, in each
sample, with tumour content; and the cellular prevalence and the abundance of
underlying mutation clusters. MuClone outputs (i) a probability for each locus, at
each sample, of being a mutation, and (ii) its cluster.

The probabilistic graphical model of MuClone is depicted in Supplementary
Fig. 2.

Model definition. We first define gnm the genotype of a given locus n in sample m,
taking values in G ¼ fA;B;AB;AAB;ABB; ¼ g. For example, the genotype ABB
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refers to the genotype with one reference allele A and two variant allele B. For
simplicity, we assume the number of reads containing the variant alleles, bnm at a
given locus with genotype gnm and read depth dnm follows a Binomial distribution
with genotype-specific variant probability p gnm

� �

bnmjdnm; pðgnmÞ � Binomial dnm; pðgnmÞ
� �

: ð3Þ

For gnm 2 G, the variant probability pðgnmÞ : G ! ½0; 1� is defined as

pðgnmÞ ¼
vðgnmÞ
cðgnmÞ vðgnmÞ≠0; vðgnmÞ≠cðgnmÞ;
ϵ vðgnmÞ ¼ 0;

1� ϵ vðgnmÞ≠0; vðgnmÞ ¼ cðgnmÞ;

8><
>: ð4Þ

where vðgnmÞ : G ! N and cðgnmÞ : G ! N return the number of the variant allele
and the copy number of genotype gnm respectively, for example v(ABB)= 2 and c
(ABB)= 3. The variable ϵ> 0 is a small positive constant that accounts for
sequencing error. It allows for non-zero variant reads, due to sequencing error,
when there are no variant alleles in genotype gnm .

However, since the sequenced reads are independently sampled from an
infinite pool of DNA fragments, at a given locus, each read may belong to the
normal, reference, or variant population. The normal population stands for
normal cells; The reference population are tumour cells which do not have
the mutation at the given locus; and the variant population are the ones carrying
the mutation. Therefore, using a single genotype state, gnm , introduces error
into our analysis. To account for this fact, we consider using the full genotype
state, ψn

m ¼ gN
n
m; gR

n
m; gV

n
m

� �
, at a given locus n and sample m, to model the

number of variant reads. Normal population fraction is 1− tm where tm is the
tumour content of sample m and the cellular prevalence of the mutation is ϕzm
which is the fraction of tumour cells carrying the mutation. According to
our prior knowledge, we assume mutations are clustered into K clusters. For a
given locus n, Zn= z ∈ {1, …, K} defines which cluster the mutation belongs
to. If a position is not a mutation then it belongs to wildtype cluster identified by
Zn= 0.

Therefore, for a mutation at a given locus n and sample m with cellular
prevalence ϕzm and tumour content tm, the variant allele probability is denoted by
ξðψn

m; ϕ
z
m; tmÞ. It is proportional to the sum of the (properly scaled) variant

probabilities from each population:

ξðψn
m;ϕ

z
m; tmÞ / ð1� tmÞcðgNn

mÞpðgNn
mÞ

þtmð1� ϕzmÞcðgRnmÞpðgRnmÞ
þtmϕ

z
mcðgV n

mÞpðgV n
mÞ;

ð5Þ

where the first term ð1� tmÞcðgNn
mÞpðgNn

mÞ is proportional to the probability of
sampling a read containing variant allele from the normal population, and the
second and third terms, tmð1� ϕzmÞcðgRnmÞpðgRnmÞ and tmϕ

z
mcðgV n

mÞpðgV n
mÞ, are

proportional to the probabilities of sampling a read containing variant alleles
from the reference and variant populations, respectively.

Considering the full genotype state, the number of reads containing the variant
alleles at a given locus n that belongs to cluster Zn follows a Binomial distribution
with probability

μðZnÞ ¼ ϵ if Zn ¼ 0

ξðψn
m; ϕ

z
m; tmÞ if Zn ¼ z and z 2 f1; ¼ ;Kg;

�
ð6Þ

where ϵ accounts for sequencing error in wildtype cluster and ξðψn
m; ϕ

z
m; tmÞ is the

variant alleles probability for nth locus, mth sample from zth cluster. According to
Eq. (5), tumour content and cellular prevalence information are incorporated to
estimate ξðψn

m; ϕ
z
m; tmÞ.

Since empirical evidence shows that variant read data is overdispersed, we
replace the Binomial model (3) with a BetaBinomial model

bnmjdnm; μðZnÞ; s � BetaBinomial bnmjdnm; μðZnÞ; s� �
; ð7Þ

where μ(Zn) is the expected variant alleles probability and the hyperparameter s is
the precision parameter of the BetaBinomial distribution. The BetaBinomial
distribution in Eq. (7) assigns a small chance for mutation when the locus is
wildtype, otherwise it is governed by the prior clonal information.

To fully express our model, for each locus, we assume the genotype state follows

a categorical distribution with probability vector πn
m 2 ½0; 1�jGj whose ith element is

the probability of the ith genotype state,

ψn
mjπn

m � Categorical πn
m

� �
: ð8Þ

The number of possible genotype states, denoted by Gj j, is finite given the
copy number information. For simplicity, we assume every element of πn

m is
equal to 1

Gj j.

In addition, we also assume that the clonal assignment of a locus, denoted by
Zn, follows categorical distribution with probability vector τ:

Znjτ � Categorical τð Þ: ð9Þ

Our probabilistic framework can be succinctly written as

bnmjdnm; μðZnÞ; s � BetaBinomial bnmjdnm; μðZnÞ; s� �
;

ψn
mjπn

m � Categorical πn
m

� �
;

Znjτ � Categorical τð Þ:
ð10Þ

Inference. Based on the generative model introduced in (10) mutations are
inferred via the posterior probability distribution of a locus n belonging to cluster z:

PðZn ¼ zjbnm; dnm; sÞ / τz
YM
m¼1

X
i2I

πnmiLðZn ¼ zjbnm; dnm; sÞ; ð11Þ

where the variable i indexes πn
m over the genotype states, I ¼ 1¼ Gj jf g. The

posterior probability of locus n belongs to cluster z is proportional to the
likelihood of observing bnm number of nucleotides matching the variant alleles
times the prior over tumour cluster z. The tumour cluster prior τz is the
fraction of mutations belonging to cluster z and it has been tuned according
to wildtype prior; the tumour cluster prior and the cellular prevalence
information are encoded in Ω. Wildtype prior is our prior information if a
locus is a mutation. If we don’t have any information we can set it to 0.5. The
likelihood function, LðZn ¼ zjbnm; dnm; sÞ, is the BetaBinomial distribution
defined in 7.

Based on basic decision theory, a decision can be extracted from a posterior
distribution given a loss function. Under the loss function
‘ðz; z′Þ ¼ 1½1½z ¼ 0�≠1½z′ ¼ 0��, the decision is simply the maximum a posteriori
(MAP). That is, if the probability η of belonging to any of the tumour clusters is
greater than 0.5, we conclude that the locus is mutated in at least one of the M
samples. The value of η is

η ¼
XK
z¼1

PðZn ¼ zjbnm; dnm; sÞ:

If locus n is mutated in at least one of the M samples, then the probability of
mutation, in each sample, is calculated separately as

Pn
mðmutantÞ ¼

X
j2J�m

PðZn ¼ jjbnm; dnm; sÞ; ð12Þ

where J�m is the set of clusters of sample m whose cellular prevalences are greater
than a fixed positive threshold called ΦT,

J�m ¼ fjjϕjm>ΦTg: ð13Þ

The threshold ΦT distinguishes the clusters of sample m in which their non-zero
cellular prevalence are due to actual variant alleles. The default value of ΦT is zero.
However, depending on the method used for estimating cellular prevalences, it can
be set to another positive value, if some non-zero input cellular prevalences
indicate wildtype clusters.

In addition, MuClone assigns the locus to cluster z* that maximizes

z� ¼ argmax
z2f1;¼ ;Kg

PðZn ¼ zjbnm; dnm; sÞ: ð14Þ

This classifies mutations to one of the previously known clusters. The classification
of mutations helps in biological interpretation and phylogenetic analysis of the
data.

Code availability. The code is available from https://bitbucket.org/fdorri/muclone.

Data availability
The high grade serous ovarian cancer data used in the current study are available
on-line at https://bitbucket.org/fdorri/muclone. All sequencing data has been
deposited in the European Genome-Phenome Archive under study accession
EGAS000010005475. The NSCLC data used for the analysis is included in
suppleantary material of TRACERx study manuscript. Sequencing data is also
available for download in the European Genome–Phenome Archive under
accession number EGAS000010022477. The patient consent for high grade serous
ovarian cancer and NSCLC data are outlined in their primary manuscript5,7.
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