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Representing dynamic biological networks with
multi-scale probabilistic models
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Dynamic models analyzing gene regulation and metabolism face challenges when adapted to

modeling signal transduction networks. During signal transduction, molecular reactions and

mechanisms occur in different spatial and temporal frames and involve feedbacks. This

impedes the straight-forward use of methods based on Boolean networks, Bayesian

approaches, and differential equations. We propose a new approach, ProbRules, that com-

bines probabilities and logical rules to represent the dynamics of a system across multiple

scales. We demonstrate that ProbRules models can represent various network motifs of

biological systems. As an example of a comprehensive model of signal transduction, we

provide a Wnt network that shows remarkable robustness under a range of phenotypical and

pathological conditions. Its simulation allows the clarification of controversially discussed

molecular mechanisms of Wnt signaling by predicting wet-lab measurements. ProbRules

provides an avenue in current computational modeling by enabling systems biologists to

integrate vast amounts of available data on different scales.
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The growth in available knowledge about interactions of
genes and proteins1 inspired efforts to integrate this into
mathematical models2. This was done in order to simulate

functions of organisms in silico3 and in particular, to use the
resulting insights for prediction of outcomes in vitro and in vivo4.
The complexity of elucidating such interaction networks and their
mechanisms represents an ongoing challenge5. Static approaches
can provide a basis for assessing possible protein-protein inter-
actions6. As their specific actions depend on activities of other
interactions as prerequisites, the system of interest can be better
understood by examining the dynamics of the underlying inter-
actions7–10.

A range of dynamic modeling approaches are used for analyses
of biological systems. The choice of model type is based in par-
ticular on available data. Boolean networks can represent discrete
levels of system interactions’ activities which makes them espe-
cially suitable to model gene regulatory networks11. Regarding
substance quantities and time as continuous allows one to use
kinetic laws to describe the temporal dynamics. The resulting
differential equations models have been used for analysis of
metabolism12. Bayesian networks can represent distributions of
interaction activities dependent on other interactions. Iteratively
reusing derived distributions allows them to recapitulate dyna-
mical systems13. There are also several approaches aimed at
bridging discrete and continuous models, by allowing continuous
times and stochastic Boolean models14,15, by allowing inter-
mediate values for Boolean networks16, or introducing a prob-
abilistic selection of Boolean functions17,18. A range of
approaches is based on a logical description of a system that
allows a formal verification of its properties19–22.

These aforementioned dynamic modeling approaches require
an explicit consideration of the crosstalk of all simultaneous
interactions. This can be done for example by defining pre-
cedencies or specifying outcomes of combinations. Thus, such
methods imply further additional effort for the modeler. Espe-
cially, as only limited data on the effects of interactions’ combi-
nations is available, they face further challenges in deducing
appropriate model formulations (ODEs, Boolean formulae)
manually as well as automatically23–25. In contrast, logical rules
can capture the combinatorial nature of possible interactions in a
more intuitive way by allowing the specification of each transition
as a rule independent of all other rules26–29. Such rules can be
implemented into mathematical models that can be simulated in-
silico and analyzed using logical frameworks30.

Perhaps the most common setting in signaling networks is the
transduction of an extracellular signal from the plasma mem-
brane by a cascade of messengers towards a transcriptional
response in the nucleus31. This is mediated by a set of diverse
molecular reactions and mechanisms that take place in different
spatial and temporal frames. In a static view, knowledge about
possible interactions of components can be obtained compara-
tively easily as the conditions can be either controlled or averaged
over a large number of combinations6. Under dynamics, the
presence of specific preconditions for the action of an interaction
can become crucial31. Thus, the interdependencies between the
interactions define a logic succession of interaction activities
whose stages are not equidistant. This constitutes a major reason
for the difficulties encountered when modeling signal transduc-
tion using the previously mentioned modeling approaches. In
contrast, computational analyses of cancer progression based on
multiscale methods have been fruitful32–34. The different cell
types involved in cancer are intertwined by mechanisms on
multiple temporal and spatial scales, as are components of sig-
naling networks within cells31.

Here, we develop a rule-based probabilistic modeling method,
ProbRules, that can be used to predict the dynamic behavior of a

complex signaling network, such as the computationally well
investigated Wnt network35–41, based on qualitative data. This
method is based on a more intuitive description of the involved
interactions in the form of rules instead of rate equations. States
of protein interactions are represented by probabilities for the
occurrence of this interaction at each point in time. Successor
states are derived using activities of rules based on current state
probabilities.

As network motifs constitute basic building blocks of mole-
cular networks42,43, they can serve as proof-of-principle appli-
cations for novel modeling methods. We show that the rule-based
probabilistic method can represent various networks motifs
comparable to quantitative models based on differential equa-
tions. Wnt signaling is vital in different contexts, such as during
embryonic development44 and cancer45 and thus can serve as an
exemplary signal transduction network for computational inves-
tigation. Important questions within the Wnt network focus on
the interplay of the different branches36 and molecular
mechanisms of β-catenin accumulation upon stimulation by
Wnt39–41. We specify a comprehensive multi-scale rule-based
probabilistic model of Wnt/β-catenin and Wnt/JNK (c-Jun N-
terminal kinase) signaling based on literature. Specifically, we
investigate whether the β-catenin level is inhibited at the level of
β-catenin phosphorylation or ubiquitination. The computational
results are confirmed by wet-lab experiments.

Results
ProbRules is a novel probabilistic modeling approach. Our
rule-based probabilistic model consists of an interaction graph46

and a set of rules. Vertices in the graph constitute components of
a system. Possible interactions among these correspond to
undirected edges. The interaction graph forms the static repre-
sentation of the model (Fig. 1a). Probabilities attached to the
edges represent states of interactions. This is different from other
approaches where the states of models correspond to the pre-
sence/absence (Boolean) or concentration (ODE) of components
of the system. Rules drive target interactions’ probabilities based
on logical conjunctions of source interactions towards defined
values by so-called attack rates. These attack rates allow target
interactions’ probabilities to take intermediate values during a
transition towards a target value. Using such ProbRules models,
we can represent systems dynamics comparable to analytic
solutions of ordinary differential equations (Fig. 1c). Concurrent
rules for a particular target interaction are combined by averaging
the proposed intermediate values. We use exact probabilistic
inference47 for deriving rules’ activities from source interactions
and proposed intermediate values. This way, rules can formalize
knowledge about interdependencies of interactions independent
of the quantitative scales involved. Such multiple scales are pre-
dominant in signaling networks31. Generally, the probabilistic
simulation approach works as described in Table 1 and Fig. 1a.

In the following we give a short mathematical description of
our approach; a full account is given in the Supplementary
Information.

Static graph of possible interactions. The graph of interactions
GI= (V, E) consists of a set V of vertices representing system
components and a set E ⊆ V ×V of edges representing possible
interactions of the components. As such, the graph represents the
static structure of the modeled system. The example shown in
Fig. 1a is defined by V= {a,b,c,d,e,f} and E= {(a, b),(b, c),(b, d),
(c, e),(d, e),(e, f)}.

Model states, time points and dynamics. The state of an inter-
action (i, j) ∈ E of two components i ∈ V and j ∈ V at a time
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point t is denoted by the probability pt(i, j). A state St(E) of the
model for a time point t is defined by corresponding probabilities
pt attached to the edges E of the graph GI:

St Eð Þ ¼ pt i; jð Þ 2 0; 1½ �j i; jð Þ 2 Ef g

Each such St defines a random graph model which essentially is
a probability distribution Dt over possible subgraphs G= (V, EG)
of GI with EG ⊆ E 47. Therefore, the probability Pr(G) of a
subgraph G is

Pr Gð Þ ¼
Y
e2EG

ptðeÞ
Y

e2EnEG
1� ptðeÞ

The edges (i, j) can be viewed as independent random variables
that are true with probability pt(i, j). Dynamics of a modeled
system can be represented by a sequence of states S0, S1,…, ST.
Thereby, the probabilities of the different interactions can evolve
over time. Although the random variables corresponding to the
edges are independent from each other at any particular point in
time t, interdependencies between the interactions at different
time points can be introduced. This is achieved in a controlled
way by evaluating rules.

Interdependency rules. A set R of rules defines the inter-
dependencies between activity states of interactions. Each rule
takes the form

r : φ ) p i; jð Þ�!ar q

where φ represents a Boolean condition (formula) on source
interaction states and (i, j) is the affected target interaction whose
activity state p(i,j) is driven towards the target probability q by the
attack rate ar. Interdependencies between interactions can act by
driving target interactions’ probabilities towards arbitrary values
using arbitrary attack rates. For the example in Fig. 1 six rules can
be specified:

1 : p a; bð Þ ) p b; cð Þ�!a1 1

2 : p a; bð Þ ) p b; dð Þ�!a2 1

3 : p b; cð Þ ) p c; eð Þ�!a3 1

4 : p b; dð Þ ) p d; eð Þ�!a4 1

5 : p c; eð Þ ) p e; fð Þ�!a5 1

6 : p d; eð Þ ) p e; fð Þ�!a6 1

Given a model state St at time t, the probability of activation φt
of a rule’s formula φ can be determined using the rules of
probability calculus. Thus, φt denotes the probability that the
logical formula φ holds in a randomly sampled subgraph
according to the distribution Dt.

The interdependency rules operate in a step-wise manner in
regard to the evolution in time. At each point in time t−1, each
rule r proposes a new probability value qt(r, i, j) for its target
interaction (i,j).

Interaction states proposed by rules. A basic rule r with con-
dition φ, target (i, j), target probability q, and attack rate a has to
be read as: whenever φ holds at time t−1 the probability of the
interaction (i, j) at time t will be

qt r; i; jð Þ ¼ 1� að Þ � pt�1 i; jð Þ þ a � q

That means that whenever φt-1= 1 the new probability for (i, j)
is an affine combination of the previous state pt−1(i, j) and the
target probability q as determined by the attack rate a.

In general (for arbitrary St) the condition φ will not hold on all
subgraphs that can be sampled according to Dt, and thus the
probability φt will be < 1. To account for this, the rules contribute
only with a corresponding factor φt−1 * qt(r, i, j) to the target pt(i,
j). Due to subgraphs where φt is false, a factor for the negation
(1−φt-1) would be lost at each time step. To account for this lost
factor and subgraphs, a standard decay rule is introduced.

Decay of interactions’ activities. The standard decay rule states
that an interaction that is not affected by any active rule returns
to its defined initial state p0(i, j) by a global decay rate d:

qt d; i; jð Þ ¼ 1� dð Þ � pt i; jð Þ þ d � p0 i; jð Þ
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Fig. 1 ProbRules modeling. a ProbRules models represent activities of
interactions by probabilities on the edges of a static graph (i.e., PPIs). Rules
specify interdependencies between the interactions (blue arrows). b The
ProbRules simulation uses the specified probabilities of the edges (I,
numbers) for determining the activity levels for the rules (II), and
subsequently applies active rules to modify the target edge probabilities
accordingly (III). Iterations of this process enable ProbRules to represent
system dynamics. c Comparison of simple regulation dynamics specified by
a Boolean model, by a ProbRules model and by an ordinary differential
equation (ODE) model. Input A (upper graphs) is not present (0) before
t= 50 and fully present (1) thereafter. Upon presence, it activates output B
(lower graphs) and drives it from the initial value (0) towards presence (1)
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Combining rules targeting an interaction with decays. Com-
bining a single effective rule with the default decay rule yields the
value

pt i; jð Þ ¼ φt�1 � qt r; i; jð Þ þ 1� φt�1

� � � qt d; i; jð Þ

Thus the decay rule applies only when the other rule is not
active.

Consider now rules r1,…, rn with formulas φ1,…,φn which
target the same interaction (i,j). They each propose new states
qt(r1, i, j),…, qt(rn, i, j) of that interaction. A method for
combination can be obtained by considering the meaning of a
rule rk. Such a rule basically states that whenever φk holds—for
those subgraphs for which φk holds - the target has to be set to
qt(rk, i, j). A concrete realization consists of subgraphs for which
exactly m conditions φk1,…, φkm hold with corresponding qt(rk1, i,
j),…, qt(rkm, i, j). In these cases, the combination will be the
average to these subgraphs:

qt Φfk1;¼ ;kmg; i; j
� �

¼ 1
m

Xm
i¼1

qt rki; i; jð Þ

where

Φfk1;¼ ;kmg ¼ ^
s2fk1;¼ ;kmg

ϕs ^
s2 1;¼ ;nf g�fk1;¼ ;kmg

:φs

As for the single rule case, the decay rule still applies for
subgraphs in which

Wn
i¼1φi is false.

Representing dynamics, inputs, and perturbations. After
deriving the proposed next states pt of all interactions (i, j) based
on the previous interaction state St-1 yields the new interaction
state St. Then, a new cycle can be started which yields new
interaction states and so on, until some final time point T is
reached. This allows to simulate dynamics of biochemical systems
like the Wnt signaling networks using their static interaction
graph and interdependency rules on the states of the interactions.

Inputs can be provided to a ProbRules model at specific
interactions and times by specifying an explicit probability

pt i; jð Þ ¼ fixed i; j; tð Þ

This also allows to investigate perturbations like inhibition and
constitutive activation of a specific interaction (i, j) in a specified
ProbRules model.

Grounding on causal probabilistic time logic. Iterative evalua-
tion of the rules can be used to derive sequences of new states
(Fig. 1b) and thus to represent dynamics of systems by simulation
of a ProbRules model. The probabilistic state sequences generated
in this way correspond to relational processes that can be mod-
eled in Causal Probabilistic Time Logic (CPT-L)48. This also

allows a direct implementation of averaging upon the joint action
of concurrent rules on a particular target interaction. Based on
CPT-L, the model was implemented in ProbLog47, a probabilistic
extension of Prolog49. We use these logical frameworks as theo-
retical and practical foundations of ProbRules (details of imple-
mentation in Supplementary Information).

ProbRules models reproduce common network motifs
dynamics. Network motifs are patterns of interconnections
occurring in complex networks more often than expected in a
randomly wired network42,43. Such patterns are assumed to form
the basic building blocks of biological networks. They can enable
cells to adopt specific functions such as detection of a fold-
change38,50. We implemented simple regulation, positive auto-
regulation and negative autoregulation, two different bi-fan
motifs, coherent and incoherent feed-forward loops and single
input module motifs as rule-based probabilistic models (see
Supplementary Information for interaction graphs and codes). As
the function of the individual network motifs is highly dependent
on the particular reactions, we used different attack rates in the
individual rules to represent the local dynamics. The dynamics of
the computational models match those of approaches based on
differential equations (Fig. 2).

A robust multi-scale ProbRules model of Wnt signaling. In
order to assess the suitability of ProbRules models for repre-
senting an elaborate biological system, we collected core com-
ponents and interactions of the Wnt signal transduction network
(Fig. 3a) as it is a prototypical signal transduction subsystem with
various functions in many organisms36,39–41,44,45. Under unsti-
mulated conditions, β-catenin concentration within the cell is
kept low by phosphorylation via the so-called destruction com-
plex including APC (adenomatous polyposis coli), Axin and
GSK3 (glycogen synthase kinase 3β). After stimulation by extra-
cellular Wnt, this action of the destruction complex is inhibited,
β-catenin accumulates in the cytoplasm, enters the nucleus and
induces the transcription of target genes. Based on literature, we
identified 21 logical relations in the Wnt/β-catenin branch and 19
logical relations in the Wnt/JNK branch involving 46 components
and 69 interactions among them. These incorporate functional
studies of various reaction types, species, and cell types found to
be implicated in Wnt signaling using a range of measurement
methods. We translated the logical relations into a set of 93 rules
(see Supplementary Information) resulting in a comprehensive
ProbRules model of Wnt signaling. This model also incorporates
feedbacks which we provide in the Supplementary Information.
We modeled an initial unstimulated phase during which inter-
actions between APC, Axin, and GSK3 stabilize the destruction
complex, followed by external Wnt stimulation and a slow decay
to the unstimulated state. Besides an explicit attack rate for the
slow Wnt stimulation decay all rules describing inter-
dependencies between interactions within the ProbRules model of
the Wnt network used a joint attack rate. Moreover, the

Table 1 ProbRules algorithm

Prerequisites Components (i.e., compounds, molecules) are nodes in the graph
Interactions (with probabilities) are edges between components
Dependencies between interactions (rules) are curves arcs

Algorithm (1) Initial edge probabilities are set
(2) Interactions are determined according to edge probabilities
(3) Determine and apply active rules
(4) Adjust edge probabilities
(5) GoTo (2) until termination condition is fulfilled
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Fig. 2 Representation of quantitative network motifs dynamics in ProbRules. Simple regulation (SR/(s, r) outputs), negative (NAR/(n,ar) outputs) and
positive autoregulation (PAR/(p,ar) outputs), symmetric (ZZS/(z, zs) and WWS/(w,ws) outputs) and asymmetric (ZZS/(z, zs) and WWS/(w, ws)
outputs) bifans, feed-forward loops of coherent type I (ZZS/(z,zs) outputs) and incoherent type I (ZZS/(z, zs) outputs) as well as the single input module
(YYS/(y, ys), ZZS/(z, zs) and WWS/(w, ws) outputs) were modeled using ordinary differential equations (ODE, left) and ProbRules (right). Simple
regulation, negative and positive autoregulation are provided with a constantly present input (not shown). All other motifs are provided by input IP in ODE
models respectively (i, p) in ProbRules models. For interaction graphs, equations, and codes please see Supplementary Information
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ProbRules model of Wnt signal transduction network exhibited a
remarkable robustness to a wide range of global attack and decay
rates (Fig. 3b–d). We selected the global attack rate as 0.6 and the
global decay rate as 0.3 based on the robustness of the model over
large ranges of these parameters. Furthermore, we investigated
the robustness to additional rules by systematically adding rules

from all specified interactions plus an always active input to all
non-input interactions for two target values (on and off) which
resulted in 70*67*2= 9380 ProbRules models. About 89% of
them showed dynamics comparable to the original model of the
Wnt signaling network (Fig. 3e). We contrasted the ProbRules
model dynamics to measurements of LEF (lymphoid enhancer
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factor) transcription factor activation in cells under unperturbed
and various siRNA mediated knockdown conditions using a TCF
(T-cell factor)/LEF responding luciferase reporter as a readout. As
expected we found a dramatic decrease in reporter gene activity
upon loss of APC or LRP6 (lipoprotein receptor-related protein
6). Similar, inhibiting G protein function by pertussis toxin
treatment (PTX) affected Wnt signaling. Also, loss of Rac1 (Ras-
related C3 botulinum toxin substrate 1) or JNK2 affected the
TCF/LEF reporter whereas a loss of JNK1 had only mild effects,
likely due to low abundance of JNK1 (Fig. 4a–f, and more details
in the Supplementary Figures 1, 2) Thus, we concluded that the
model predictions are in accordance with wet-lab results.

Evaluation of β-catenin accumulation upon Wnt stimulation.
Using the established model, we addressed whether the Wnt
signal is transduced at the level of ubiquitination39 or at the level
of phosphorylation of β-catenin41. Therefore, we integrated these
mechanisms (Fig. 5a, b) into our ProbRules model of the Wnt
network, simulated these and compared dynamics of β-catenin
interactions (Fig. 5c, e, f, h) to results from wet-lab experiments
(Fig. 5d, g) obtained using a well-characterized and validated
suspension bead array-based β-catenin assay51–55. The results are
in good agreement with published data38. We observed a tran-
sient drop in the amount of phosphorylated β-catenin if we
included inhibition of β-catenin phosphorylation but not if we
included inhibition of β-catenin ubiquitination into the model
(Fig. 5f, h). Thus, our ProbRules model of Wnt signaling and our
experimental (Fig. 5d, g) data provide further support for the
signal transduction mechanism through inhibition of β-catenin
phosphorylation41.

Discussion
ProbRules is a novel probabilistic modeling approach for inte-
grating multi-scale knowledge about the dynamics of interactions.
It mitigates the costs of an investment into specifying an in-silico
model of a biological system in several ways. First and foremost,
the domain expert can focus on knowledge representation by
rules as the translation into a mathematical model is done
automatically using exact probabilistic inference56 methods used
by the ProbRules implementation47. As with other approaches,
modelers might start building a rough model with only core
interactions, comparatively few rules connecting these and global
rates without having to consider all possible effects of combina-
tions of interactions. Such models can show merely qualitative
dynamics, see the ProbRules model of the Wnt signaling network
specified above. ProbRules also facilitates to implicitly integrate
unknown reaction partners and conditions into rules at the early
stages of a model by specifying placeholders. Later, the model can

be gradually refined by additional rules, adjacent interactions, and
distinct rates for rules eventually approaching quantitative
dynamics like we demonstrated this for network motifs. Fur-
thermore, ProbRules enables to incorporate mechanisms with
diverse scales and speeds into a unified computational model
without forcing the modeler to consider relations of temporal and
spatial properties of subsequent interactions. Such mechanisms
are prevalent in many biomedical domains, and particularly in
signal transduction networks31.

Technically, ProbRules is based on probabilistic programming,
an emerging subfield of artificial intelligence. Network models are
derived from the static graph of possible interactions. Their
activities are abstracted by probabilities. The corresponding
product distribution defines a state of the system on the inter-
action graph. Dynamics are implemented by iteratively applying
rules that modify target interactions’ probabilities. Probabilistic
inference is used to drive interaction activities towards target
probabilities.

In order to demonstrate capabilities of ProbRules, we imple-
mented common network motifs of biological networks. Their
dynamics were comparable to results of approaches based on
differential equations. Furthermore, we provided a robust com-
prehensive model of Wnt signaling that highlights the integration
of multi-scale knowledge from literature. This ProbRules Wnt
model also allowed the investigation of controversially discussed
mechanisms within the Wnt signal transduction network as our
wet-lab experiments confirmed the predictions of the in-silico
model. The ProbRules model of Wnt signaling considered here
used global parameters for the rules and thereby represented at
least three different temporal scales without additional work of
the modelers. A refined ProbRules model can introduce spatial
scales by specifying components in several compartments. Other
approaches also allow specification of mechanisms on diverse
scales23. ProbRules differs in this respect, as it facilitates to cap-
ture dynamic prerequisites of interactions as these are pre-
dominant in multi-scale contexts like signal transduction
networks31.

ProbRules offers a probabilistic interpretation of the specified
rules. It uses a default combination scheme for avoiding a com-
binatorial explosion in the specification of these rules. Together
with the iterative state update this results in a model that is
continuous in state space and discrete in time. The intermediate
rates specified in rules and the resulting multi-stage transitions of
activities between interaction are an outstanding feature of
ProbRules. Other models like Boolean networks, that are discrete
both in time and state space, can as well be approximated by
specifying 0 or 1 as attack and decay rates. Using this approx-
imation, we observed that all network motifs except for the
incoherent feed-forward loop lost the ability to represent their

Fig. 3 Key components and interactions in the ProbRules Wnt model. aWithout extracellular Wnt, β-catenin is phosphorylated by the destruction complex
and proteasomally degradated. Extracellular Wnt inhibits the destruction complex and cytoplasmic β-catenin accumulates. Wnt-induced disheveled
activates Rac (Ras-related C3 botulinum toxin substrate) which further activates JNK1 (c-Jun N-terminal kinase 1)/JNK2. Activated JNK2 allows β-catenin
to translocate into the nucleus to induce in combination with LEF (lymphoid enhancer factor) transcription. In contrast, JNK1 activates GSK3-β (glycogen
synthase kinase 3β). The pale orange arrow represents a so far unknown positive influence of Rac on β-catenin accumulation that was predicted by our
study. The model comprises 46 molecules with 21 logical relations for the Wnt/β-catenin and 19 logical relations for Wnt/JNK branches which were
represented using 69 interaction edges and 93 rules. For details please see Supplementary Information. b–d Analyses of LEF/β-catenin–DNA interaction
dynamics robustness to parameter values. Global attack rate ranges from 0.06 to 0.9. Global decay rate equals to 1/3 (b), 1/2 (c), or 2/3 (d) of the
respective global attack rate. Global attack rate controls the onset of transcriptional response. Global decay rate determines the overall level of the
response. e Structural robustness analysis by systematic introduction of additional rules. Rules source from all 69 interactions in the ProbRules model
plus a constantly active interaction, target 67 interactions (i.e., excluding the two inputs) and drive the targets towards either ‘on’ or ‘off’, resulting in
70*67*2= 9380 augmented models. The majority of the simulation results (89.1%) shows no or a negligible effect, around 5.93% show a moderate (Type
1A) to nearly total (Type 1B) decrease at the output, around 2.76% a moderate (Type 2A) to strong (Type 2B) increase and around 2.2% show phases of
constant activation before stimulation (Type 3A) or during the complete simulation (Type 3B)
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dynamics in comparison to the ProbRules models with inter-
mediate rates (for details see Supplementary Information). The
same applies to our ProbRules model of the Wnt signaling
network.

On the other side, a direct representation of interaction
probabilities by products of concentrations can possibly be
obtained for some given numerical values. From a computer
scientists point of view, the decision whether there are feasible
decompositions of arbitrary interaction probabilities into con-
centrations of the partners is considered a hard problem57.
Additionally, a method for translation of rules and their combi-
nations into differential equations would be required in order to
derive models continuous both in state space and time. Therefore,

the specification of differential equations for ProbRules models
faces several challenges that require a more careful consideration
in future attempts.

As exemplified with the presented model of Wnt signaling,
ProbRules can integrate multiple scales of systems in a single
model. At least three different scales were specified for the
ProbRules model of Wnt signaling (see Supplementary Infor-
mation). Nevertheless, the model is able to reproduce
wildtype and perturbation dynamics using a small set of global
parameters that do not differ by several orders of
magnitude. This demonstrates the applicability of
ProbRules for specification of an initial model of a signaling
network.
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Fig. 4 ProbRules predictions for Wnt model (upper parts of panels) and wet-lab validation (lower parts of panels). a Knockdown of APC strongly enhances
basal as well as Wnt-3a induced Tcf/Lef transcriptional activity. b Inactivation of Gi, Go, and Gt α subunits reduces Wnt-3a induced Tcf/LEF transcriptional
activity strongly. c In contrast, knockdown of LRP6 suppresses Wnt-3a induced Tcf/Lef transcriptional activity almost completely. Loss of JNK1 (d) does
not notably affect the transcriptional response to Wnt-3a treatment whereas loss of JNK2 (e) clearly suppresses Wnt-3a induced Tcf/Lef transcriptional
activity. f Furthermore, knockdown of RAC1 also strongly suppresses Wnt-3a induced Tcf/LEF transcriptional activity. Supplementary Figures 1 and 2 show
RT-PCR analyses after treatment with different stealthRNA duplexes specific for APC (a), LRP6 (c), JNK1 (d), JNK2 (e), and RAC1 (f). Gα (b) inhibition was
simulated by fixing the interaction probability between Gα and GTP to 0. Knock downs of APC (a), LRP6 (c), JNK1 (d), JNK2 (e) and RAC1 (d) were
modeled in ProbRules by fixing all probabilities of interactions involving these to 0. Lower panels show fold change in Luciferase activity compared to cells
treated with control siRNA: black points represent three independent control experiments, red points represent three independent perturbation
experiments, and solid lines represent cubic splines fitted to the measurements
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In contrast to Probabilistic Boolean Networks17,18, ProbRules
uses the same rules for each transition. As the state of a model is
probabilistic, so are the rules’ activities. ProbRules integrates these
rules’ activities into a single new probabilistic state. This allows an
evolution of model states and thus, representation of system
dynamics. Boolean Network Extension16 (BNE) aims at unco-
vering additional attractors corresponding to observed pheno-
types by using existing Boolean models and allowing intermediate
values for component states. An approach similar to the last,
Boolean Kinetic Monte-Carlo14,15 (BKMC), focuses on also
enabling continuous time. Both BNE and BKMC require the
modeler to specify Boolean formulae that have to explicitly define

the relations between all factors influencing a target value. Data
about the combined effects of all possible inputs on a target is
usually not available due to the combinatorial explosion and thus
costs. Therefore, the specification of rules independent of each
other utilizing available knowledge about interdependencies of
interactions like it is done in ProbRules can be considered as a
fruitful direction of computational modeling research.

ProbRules provides a basis for further interpretations of the
rules in a similar way as this has been described before in
approaches based on non-probabilistic rules19,26,28–30,58,59.
Besides distinct model types with combinations of discrete and
continuous state or time, novel semantics for the rules can
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Fig. 5 Assessment of two discussed mechanisms of destruction complex inhibition upon Wnt stimulation. a Inhibition of β-catenin ubiquitination39

prevents proteasomal degradation of β-catenin and leads to β-catenin accumulation. b Inhibition of β-catenin phosphorylation through inhibition of GSK-3β
by GBP/FRAT66 or through axin dephosphorylation by protein phosphatase 1 (PP1) inhibiting axin/β-catenin interaction40 leads to accumulation of β-
catenin. c, e Simulation of the LEF/β-catenin–DNA interaction dynamics shown as a measure for the transcriptional activity. f, h Simulation of β-catenin– β-
cateninPP dynamics shown as a measure for β-catenin phosphorylation. d Luciferase reporter activity in HEK293 cells is maximal about 8–12 h after addition
of Wnt-3a while the amount of S33/S37/T41-phosphorylated β-catenin is minimal about one hour after addition of Wnt-3a and then returns to its initial
level within three to four hours (g). d, g show fold change in Luciferase activity: black points represent three independent experiments, and solid lines
represent cubic splines fitted to the measurements
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explicitly implement spatial mechanisms like compartments,
diffusion and membrane passages. As stochastic effects also play
an important role in biological systems like signal transduction
networks, new model types can also specify ensembles of repre-
sentatives in order to approach the dynamics of corresponding
phenomena. Moreover, based on available static data about
interactions, new dynamic rules can be derived automatically in
order to obtain model dynamics comparable to observations of
phenotypes, their development, and homeostasis. This resembles
structure learning methods19–21,60, and thus techniques for
combinatorial inference of rules can become available for models
built on ProbRules. The integration of ProbRules with tools for
visualization and specification of computational models61 can
further lower the burden for the domain expert.

Previous modeling approaches often suffered from an explo-
sion of parameters that have to be estimated as the effect for every
combination of interactions had to be considered. Targeting this
challenge, ProbRules can provide an efficient factorization of
combined interactions’ effects by introducing rules into these
models. This can be especially useful for Bayesian networks, as
the difficulties in parameter learning impede the application of
traditional approaches based on distributions of probabilities.
ProbRules addresses the increasing demand in formalization and
analysis of dynamic computational biology by enabling a fine-
grained control over the level of mechanism specification for
incorporation of succinct models. Thus, ProbRules supports the
shift in the focus from metabolism and gene regulation towards
complex signal transduction networks in contemporary life sci-
ences research.

Methods
Cell culture. Culturing of HEK293 cells was done in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (GIBCO) at 37 °C in
a 5% CO2 incubator. For generation of HEK293 clones stably expressing a Tcf/Lef-
dependent luciferase reporter, cells were transfected with 0.8 µg pGL4.18-Tcf
plasmid using Lipofectamine2000 (Invitrogen). The pGL4.18-Tcf plasmid was
derived from the promotorless pGL4.18 plasmid (Promega) by insertion of 7 Tcf/
Lef binding sites and a TATA minimal promotor into the MCS. Two days after
transfection cells were selected in culture medium supplemented with 800 μg/ml of
G418 (PAA). Three independent clones resistant to G418 were propagated and the
one with the highest luciferase expression was used for all following experiments.

stRNA knockdown. For the knockdown experiments pre-designed stealthRNA
duplexes (=stRNA) from Invitrogen were used targeting human LRP6
(HSS106153, 106154, HSS106155), APC (HSS100547, HSS100548), RAC1
(VHS40447, VHS40448), JNK1 (=MAPK8) (VHS40722, VHS40724) and JNK2
(=MAPK9) (VHS40726, VHS40729) (stealthRNA sequences are given in Supple-
mentary Methods). AllStars Negative control siRNA (Qiagen) was used as a control
(sequence see Supplementary Methods). HEK293T cells were seeded in 6-well
plates and on the next day treated with 10 nM stealthRNA by using Lipofecta-
mineRNAiMAX reagent (Invitrogen) according the manufacturer’s protocol. All
stealthRNAs were checked for their knockdown efficiency on RNA level (Supple-
mentary Figures 1, 2) and the best for each gene was used for further analysis. For
western-blot and mass-spectrometry analysis, protein was isolated after 48 h of
stealthRNA treatment. The knockdown efficiency of the best stealthRNA was
further confirmed on protein level (Supplementary Figures 1, 2). For the Luciferase
assay HEK293 cells expressing the Tcf/Lef-dependent luciferase reporter were
treated with recombinant Wnt-3a (R&D Systems) at a concentration of 50 ng/ml
for 0–20 h on the third day after addition of stealthRNA. In this case, the total
duration of stealthRNA treatment was either 58 h (0–10 h of Wnt-3a treatment) or
72 h (12–20 h of Wnt-3a treatment).

Western blot. Knockdown on protein level was checked by Western blot in case of
APC and LRP6 (Supplementary Figures 1A, 1B, 2A, 2B). After 48 h of treatment
with stealthRNAs total protein was extracted from HEK293T cells. Therefore, cells
were lysed with RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet
P-40, 0.1% SDS, 0.5% sodium deoxycholate) and incubated on ice for 10 min. After
15 min of centrifugation at 13,000 rpm and 4 °C, supernatant was collected. The
protein concentration was measured using Bradford assay with BSA as standard.
Standard procedures were used for Western Blotting. Nitrocellulose membranes
were incubated for 4.5 h at room temperature with primary antibodies APC [ALi
12-28] (ab58, abcam) and LRP6 (C47E12) (#3395, Cell Signaling). As loading

control blots were probed with a GAPDH (14C10) (#2118 S, Cell Signaling)
antibody. Proteins were visualized using Li-COR ODYSSEY Imager.

Mass spectrometry. Knockdown on protein level was checked by mass spectro-
metry in case of Rac1, JNK1, and JNK2 (Supplementary Figures 1C–1D). Sample
preparation: HEK293T cells were treated for 48 h with stealthRNAs, suspended in
PBS and centrifuged for 5 min at 1100 rpm. Supernatant was discarded and cell
pellets were sent on dry ice to mass spectrometry. Proteins were separated using
standard 12.5% SDS-Page followed by colloidal Coomassie staining. Two gel slices
were cut at 21 kDa and 48 kDa for Rac1, JNK1, and JNK2, respectively. Individual
pieces were washed by alternating incubation in 50 mM ammonium bicarbonate
and 25 mM ammonium bicarbonate / 50% Acetonitrile (ACN) thrice for 10 min
each. Following vacuum drying, samples were reduced with 5 mM DTT (Appli-
Chem, Darmstadt, Germany) for 20 min at RT and subsequently alkylated with
iodoacetamide (SigmaAldrich, St. Louis, USA) for 20 min at 37 °C. After a second
vacuum drying step, proteins were subjected to tryptic digest overnight at 37 °C.
Peptides were extracted in two rounds by adding 20 µl 0.1% Trifluoroacetic acid
(TFA)/50% ACN and incubation in an ultrasonic bath for 10 min each. ACN was
evaporated and samples filled to 15 µl with 0.1% TFA.

MS-analysis: Samples were measured using an LTQ Orbitrap Velos Pro system
(Thermo Fisher Scientific, Bremen, Germany) online coupled to an U3000
RSLCnano (Thermo Fisher Scientific, Idstein, Germany) as described in Mohr
et al.62, with the following exceptions: Separation was carried out using a binary
solvent gradient consisting of solvent A (0.1% FA) and solvent B (86% ACN, 0.1%
FA). The column was initially equilibrated in 5% B. In a first elution step, the
percentage of B was raised from 5 to 15% in 5 min, followed by an increase from 15
to 40% B in 30 min. The column was washed with 95% B for 4 min and re-
equilibrated with 5% B for 25 min.

MS data analysis and statistics: Database search was performed using
MaxQuant Ver. 1.5.2.8 (www.maxquant.org)63. For peptide identification, MS/MS
spectra were correlated with the UniProt human reference proteome set (www.
uniprot.org) employing the built-in Andromeda search engine64.
Carbamidomethylated cysteine was used as a fixed modification along with
oxidation (M), and acetylated protein N-termini as variable modifications. False
Discovery rates were set on both, peptide and protein level, to 0.01. Calculated
intensity values for JNK2 and Rac1 were normalized to the summed intensity in the
respective band to correct for gel loading differences.

RNA isolation and PCR. RNA was isolated and PCR was performed to check the
knockdown efficiency of the stealtRNAs (Supplementary Figures 1, 2C–2G). After
48 h of stealthRNA treatment total RNA was extracted from the cells by using the
QIAshredder™ Kit and the RNeasy® Mini Kit (QIAGEN) according to the manu-
facturer’s protocol. Subsequent DNAse I digestion was performed with DNAse I
recombinant, RNAse-free (Roche) for 30 min at 37 °C followed by an inactivation
at 65 °C for 5 min. cDNA synthesis was done with Random Hexamer Primer
(ThermoFisher) and SuperScript™ II Reverse Transcriptase (ThermoFisher). This
cDNA was used in the subsequent PCR, here the following program was used: 95 °
C for 45 sec followed by 27 or 35 cycles of 95 °C for 15 sec/ 55 °C for 30 sec/ 72 °C
for 4 sec followed by a final extension at 72 °C for 10 sec. Primers against human
LRP6, APC, Rac1, JNK1, and JNK2 were used as well as human GAPDH as
controls (sequences are given in Supplementary Methods). PCR products were
made visible on 1% agarose gels with Midori Green and UV-illumination.

Pertussis toxin treatment. HEK293 cells expressing the Tcf/Lef-dependent luci-
ferase reporter were seeded in 48-well plates. On the next day 50 ng/ml pertussis
toxin (PTX) (Alexis) was added. On the next day cells were treated with recom-
binant Wnt-3a protein (R&D Systems) at a concentration of 50 ng/ml for 2 to 20 h
while the toxin was still present in the medium. The total duration of pertussis
toxin treatment was either 24 h (up to 10 h of Wnt-3a treatment) or 38 h (more
than 10 h of Wnt-3a treatment).

Luciferase assay. After treatment with stealthRNA or Pertussis toxin alone or in
combination with Wnt-3a, the Luciferase Assay System from Promega was used.
Lysation of cells was done in 50 µl of Reporter Lysis Buffer (Promega) and cells
were frozen overnight at −80 °C. For the luciferase measurement 10 µl cell lysate
was added to 40 µl luciferase substrate (Promega) and the light intensity was
measured in a tube Luminometer (Bertold). Afterwards the protein concentration
of the lysates was measured by Bradford Assay: in 96-well-plates 100 µl of Bradford
reagent were added to 2 µl of cell lysate, after 5–10 min absorbance at 595 nm was
measured using a plate reading photometer (Biorad) and protein concentration
calculated by use of a calibration curve. Luciferase measurements were normalized
to the protein content of the cell lysates to account for possible differences in cell
numbers between the different treatments and replicate experiments. Additionally,
the normalized luciferase measurements were divided by the values of the
untreated (i.e. without PTX) respectively control siRNA-treated samples to yield
fold-changes.

Suspension bead array-based β-catenin assay. After treatment with stealthRNA
alone or in combination with Wnt-3a, suspension bead array-based β-catenin
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assays were performed as described by Luckert et al. to assess changes in the
amount of free or phosphorylated β-catenin51–55.

Code availability. A comprehensive description of the mathematical background
of the modeling method used here is given in the Supplementary Information.
Interaction rules for the Wnt/β-catenin and Wnt/JNK signaling were extracted
from published literature and are given fully referenced in the Supplementary
Information. The CPT-L48 implementation of the simulation framework was done
in ProbLog47 (https://dtai.cs.kuleuven.be/problog/problog1/problog1.html). Simu-
lations were performed on Linux (48 cores) and MacBook Pro (6 cores) computers.
SWI-Prolog65 served as the underlying programming environment (http://www.
swi-prolog.org/). Analyses and plots were done with R (http://www.r-project.org).
Furthermore, the network/model is publicly available at Github https://github.com/
sysbio-bioinf/ProbRules.

Data availability
All data generated or analyzed during this study are included in this published
article (and its Supplementary Information). Mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD011835.
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