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Local raster image correlation spectroscopy
generates high-resolution intracellular diffusion
maps
Lorenzo Scipioni1,2, Melody Di Bona1,3, Giuseppe Vicidomini 4, Alberto Diaspro 1,3,5 & Luca Lanzanò1

Raster image correlation spectroscopy (RICS) is a powerful method for measuring molecular

diffusion in live cells directly from images acquired on a laser scanning microscope. However,

RICS only provides single average diffusion coefficients from regions with a lateral size on the

order of few micrometers, which means that its spatial resolution is mainly limited to the

cellular level. Here we introduce the local RICS (L-RICS), an easy-to-use tool that generates

high resolution maps of diffusion coefficients from images acquired on a laser scanning

microscope. As an application we show diffusion maps of a green fluorescent protein (GFP)

within the nucleus and within the nucleolus of live cells at an effective spatial resolution of

500 nm. We find not only that diffusion in the nucleolus is slowed down compared to

diffusion in the nucleoplasm, but also that diffusion in the nucleolus is highly heterogeneous.
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The characterization of the molecular dynamics within a cell
can provide important information about cellular structure
and functions. More specifically, the study of protein

dynamics in the nucleus can be relevant for understanding many
nuclear processes and for characterizing the complex nuclear
architecture1–3. For instance, by using biologically inert macro-
molecules and measuring their mobility, it is possible to gather
insights about the chromatin architecture at a scale comparable to
the size of the macromolecules3–5. For these reasons many
techniques have been applied over the years for studying protein
diffusion in the nuclear environment6–11. Among these techni-
ques, a widely used method for measuring diffusion is single-
point fluorescence correlation spectroscopy (FCS)12. Single-point
FCS consists of shining laser light in a single diffraction-limited
spot and recording the temporal fluctuations of the intensity due
to the diffusion of a fluorescent probe in and out of this spot.
Clearly, single-point FCS provides only local information about
the molecular diffusion, but several methods have been developed
for complementing the FCS data with spatial information, in
order to obtain maps of the diffusion coefficient of the measured
sample (and eventually correlate the maps with the intensity
images).

A straightforward approach to add spatial information to FCS
is performing independent single-point FCS measurements at
different spatial locations. Maps of diffusion coefficients have
been obtained, for instance, by interpolating scattered single-
point FCS measurements8 or by using fast cameras in combina-
tion with light-sheet, total internal reflection or spinning disk
setups6,13–15. Other approaches have exploited parallel fluores-
cence signal acquisition to get FCS data at multiple detection
volumes16–19. In scanning FCS20,21 a map of diffusion coefficients
is obtained along a line, even though two-dimensional maps can
be obtained by performing several x-axis scanning FCS mea-
surements at different y-axis positions22.

A more comprehensive framework to add spatial information
to FCS is represented by the analysis of spatiotemporal correla-
tions. This analysis is done by image correlation spectroscopy
(ICS), the equivalent of FCS applied to microscopy images23,24. In
particular, raster ICS (RICS) has been developed for measuring
fast molecular diffusion by exploiting the spatiotemporal corre-
lations contained in confocal laser scanning microscope (CLSM)
images25. These correlations are analyzed through the spatial
autocorrelation function (ACF) that depends on the diffusion of
the probe and the scanning parameters. The great advantage of
RICS, compared to single-point FCS, is that it is possible to
measure the diffusion coefficient of a probe from an image (or a
series of images) acquired on a commercial CLSM.

Unfortunately, for any given image, RICS analysis provides
only an average value of the diffusion coefficient, but does not
provide the spatial distribution of the diffusion properties across
the image. In principle, diffusion maps can be obtained with RICS
by iteratively applying the analysis to small regions of the
image26–29. However, the size of these analyzed regions cannot be
too small, since the ACF would deviate from the theoretical shape
and the fitting would provide incorrect results for regions of
interest smaller than 128 × 128 pixels30. At the typical values of
pixel size used for RICS (30–50 nm) this corresponds to a spatial
resolution of ∼5 μm. Clearly, this resolution value poses a lim-
itation when spatial heterogeneity within a cell needs to be
highlighted; for example, when variations of diffusion coefficient
between the different regions of the nucleus need to be extracted.

In an effort to extend application of RICS to non-square
regions, an approach has been introduced for computing pseudo-
maps of diffusion from RICS data31. In this approach, the
pseudo-maps are obtained by a pre-segmentation of the image
based, for instance, on the intensity level, assuming that pixels

with a comparable intensity level should also bear a similar value
of diffusion coefficient31.

Recently, we have developed a method for the segmentation of
ICS data sets based on the analysis of local spatial correlation
functions, i.e., functions calculated on very small regions around
each pixel32. We have shown that, in order to compare the local
ACFs from all the pixels, the local ACFs can be analyzed in the
frequency domain, analogous to what is done with fluorescence
lifetime imaging data33,34. This phasor analysis of local ICS
(PLICS) data can provide a fast and unbiased assessment of the
heterogeneity of the correlation functions without the need of a
priori information32.

Here, we adapt the PLICS method to work on RICS data sets
for extracting local values of diffusion coefficient. We show that
this local RICS (L-RICS) analysis can be used to obtain high-
resolution (sub-micrometer) diffusion maps from images
acquired on a CLSM. We find that, in order to reduce the noise in
the map below a required level, the number of analyzed frames
must be increased in a predictable way. Notably, we show that our
local analysis can also be used on CLSMs equipped with non-
linear scanning systems, i.e., systems in which the speed of the
scanner is not constant along a line. As an application we show
diffusion maps of a monomeric green fluorescent protein (GFP)
in the nucleus of HeLa cells, at sub-micrometer effective spatial
resolution. We show that a ∼5 min-long acquisition is sufficient
to obtain a ∼5 × 5µm-sized diffusion map with an effective
resolution of 500 nm and a signal-to-noise ratio sufficient to
distinguish the different diffusion behavior of GFP in the
nucleoplasm and in the nucleolus. By limiting the analysis to
single lines, we further improve the signal-to-noise ratio of the
maps, which makes it possible to resolve small differences of
diffusion coefficient within the nucleolus.

Results
Phasor analysis of L-RICS. RICS analysis consists of computing
the spatial ACF of a series of N images Ik(x, y) acquired in raster-
scan mode. Since the raster-scan image contains spatial and
temporal information, related to the diffusion of the probe and
the microscope scanning speed, the spatial correlation of the
image also contains spatial and temporal information, and can be
fitted to a proper model to extract the value of diffusion coeffi-
cient. The general shape of the RICS spatial ACF depends on two
contributions: Gðξ; ηÞ ¼ Sðξ; ηÞ � Gdiff ðξ; ηÞ, where ξ, η are the
spatial lags along the x and y direction, respectively, while S(ξ, η)
is the component of the correlation function related to the laser
scanning and Gdiff(ξ, η) is the part related to the diffusion.
Considering only one spatial dimension (for instance, the x-axis),
the theoretical formula that connects the RICS ACF to the dif-
fusion coefficient D can be written as (Supplementary Note 1):

G ξð Þ ¼ S ξð Þ � Gdiff ξð Þ

¼ Gð0Þ � exp � jξjKsð Þ2
1þ Kt

� �
� 1þ Ktð Þ�1� 1þ w2

0

w2
z
Kt

� ��1=2

ð1Þ

where Ks = δx/w0 represents the spatial sampling, namely the ratio
between the pixel size δx and the waist w0 of the point spread
function (PSF), and Kt¼4Dτ=w2

0 ¼ τ=τD represents the temporal
sampling, namely the ratio between the pixel dwell time τ and the
diffusion time τD =w0

2/4D of the probe. It’s worth noticing that,
since the ratio between the axial and lateral waist wz/w0 is a
constant that depends on the PSF of the microscope (typically
wz/w0∼3 for a confocal PSF), the shape of G(ξ) depends only on
the sampling constants Ks and Kt.

ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-017-0010-6

2 COMMUNICATIONS BIOLOGY | 1:  (2018) 1:10 |DOI: 10.1038/s42003-017-0010-6 |www.nature.com/commsbio

www.nature.com/commsbio


Now, for every pixel (i, j), we define a local ACF Gij
m(ξ, η):
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Where N is the total number of frames and Iijk(x, y) indicates a
sub-image of size m ×m centered on pixel (i, j), hereafter referred
to as “L-RICS mask” or simply “mask”. This local ACF can be very
different from the global ACF calculated on the entire image
(Fig. 1a, b) and cannot be described by the theoretical expression
Eq. (1). Because of this deformation effect, due to the fact that
fluctuations are sampled in a very short interval22,30,32, the shape
of each local ACF depends also on the size of the mask. In order
to analyze the local ACFs from all the pixels, we consider the 1D
local ACF Gij

m(ξ) (see Methods) and use the phasor approach to
calculate g(i, j) and s(i, j):
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and calculate the phase parameter ϕ(i, j) (see Methods), which
encodes offset-independent information about the shape of the
local ACFs32. Here, L represents the number of points in which
the function Gij

m(ξ) is sampled, for instance for an odd-sized
mask of size m, L = (m + 1)/2. As a result, for a given RICS data

set, we get a phase map that contains spatial information on the
diffusion properties (Fig. 1c, d). Smaller phase values correspond
to local ACFs which decay more rapidly to zero (faster diffusion),
whereas larger phase values correspond to local ACFs which
decay less rapidly to zero (slower diffusion).

The noise of this phase map depends on the size of the mask
and on the number of frames used for averaging (Fig. 1c–e). As
expected, the error on the phase parameter follows the same
general trend derived for FCS35,36, i.e., σϕ / 1=

ffiffiffiffiffiffiffi
tacq

p / 1=
ffiffiffiffi
N

p
,

where tacq is the time needed to acquire N frames. For a given
number of averaged frames, the error on the phase is larger for a
smaller size of the mask (Fig. 1c–e). We calculated from
simulations the number of frames required to reach a given
precision in the determination of the phase. For instance, for the
21 × 21 pixels mask, at the conditions of the simulation (bright-
ness ∼24 kHz), we can see that the error on the phase decreases
from ∼15 to ∼4% by increasing the number of frames from 10 to
100. These numbers can be used to estimate the expected error in
the phase for a given experiment, provided that the brightness
and the acquisition parameters set for the simulation match those
of the actual experiment.

Finally, in order to convert the phase map into a map of
diffusion coefficients, we built a series of calibration functions,
based on simulated data, for different values of Ks, Kt and m.
Indeed, for a given value of Ks and for a given value of m, we
obtain a well-defined relationship between the phase ϕ and Kt

(Fig. 1f). Provided that the dwell time is known, this relationship
can be used directly to convert a value of phase ϕ into a value of
diffusion coefficient D (Fig. 1f).

L-RICS on simulated heterogeneous diffusion zones. As an
example of data with heterogeneous diffusion properties, we
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Fig. 1 Phasor analysis of local RICS. a Example of one frame of a simulation with D= 24 µm2 s−1 and a molecular brightness of 24 kHz. The solid box shows
the size of the 21 × 21 pixels mask. The white dashed box shows the region in which the analysis is performed. b Spatial ACF of the data set shown in a
computed on the whole image area (black circles) and on local masks of size 25 × 25 pixels (red squares) and 21 × 21 pixels (blue triangles), respectively.
c,d Phase maps obtained from analysis with L-RICS masks 25 × 25 pixels (c) and 21 × 21 pixels (d), respectively. The numbers indicate the number of
frames used for the analysis. e Relative phase error as a function of the number of frames for a 25 × 25 pixels mask (black squares) and a 21 × 21 pixels
mask (red circles). The dashed lines are power-law fits to the data with exponent α= −0.50± 0.01 and α= −0.49± 0.01 respectively. f Calibration curve
for the 25 × 25 pixels mask and for Ks= 1/8 as a function of D and Kt. Scale bar is 1 μm
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simulated a RICS acquisition on a sample consisting of three
regions characterized by different diffusion coefficients (D1 = 12,
D2 = 18 and D3 = 24 µm2 s−1, respectively, Fig. 2a, b). We com-
puted the spatial ACF of the entire data set and we tried to fit the
resulting function with a single component formula (Fig. 2c)
along the x-axis. We notice that the fitting yields a satisfactory
result already with a single component model (D = 16.8 µm2 s−1,
Supplementary Fig. 1), meaning that, without a priori knowledge
of the sample, it is difficult to separate the three diffusion com-
ponents. Moreover, the global ACF does not convey any infor-
mation about their spatial distribution. Instead, when we apply L-
RICS to the same data set (Fig. 2d–g) we are able to characterize
the heterogeneity of the system. Provided the statistics are robust
enough, we are able to discriminate between these diffusion
behaviors and we can speculate on their spatial distribution.

The spatial resolution of the diffusion map is given by the size
of the mask. Comparing Fig. 2d (25 × 25 pixels mask) and Fig. 2f
(41 × 41 pixels mask) we can observe that in the first case we
obtain a higher spatial resolution (25 × δx = 500 nm) but we need
to average over a larger number of frames, while in the second
case the spatial resolution is lower (41 × δx = 820 nm) but we need
considerably fewer images to reduce the noise in the diffusion
map. The difference in spatial resolution can be appreciated by
looking at the average y-axis profile at the edges of the diffusion
zones (Fig. 2e, g). Notably, given that the method is entirely
computational, the analysis of a given data set can be tuned, by
changing the size of the mask, in such a way to reduce the noise of
the map or to increase its spatial resolution.

L-RICS of a dye in solution. In order to test the algorithm on
real microscopy data, we performed a RICS acquisition on a

solution of an Alexa488-labeled antibody (Fig. 3a). We set the
laser power to 7.2 µW entering the objective in such a way to get
an apparent brightness value around 24 kHz. The sample diffu-
sion coefficient was measured by single-point FCS (Fig. 3b),
yielding a value DFCS = 30.6± 1.6 µm2 s−1 (mean± s.d., n = 10).
The same value was obtained by standard RICS analysis (Sup-
plementary Fig. 2) DRICS = 30.3± 1.1 µm2 s−1 (mean± s.d.,
n = 10, 250 frames). Examples of L-RICS diffusion maps obtained
with a different number of frames are shown in Fig. 3c, d. The
average value of D obtained from this analysis is DL-RICS = 30.8±
2.7 µm2 s−1 (mean± s.d., n = 1, m = 25, 250 frames) in keeping
with both the result from single-point FCS and the standard RICS
analysis on the same data set. For the conditions of this experi-
ment a map with low noise can be obtained with m = 25 pixels
(corresponding to a spatial resolution of 25 × δx = 500 nm) and
N = 250 frames.

This experimental data set was compared with a simulated data
set with Dsim = 30 µm2 s−1 with the same brightness and
acquisition parameters and their relative phase error was plotted
as a function of the number of frames (Supplementary Fig. 2),
showing that both the trend and the values for the experiment
match with the ones expected from the simulations, therefore
validating the use of simulations as a calibration method and for
estimating the error in the measurements.

Diffusion maps of GFP in the nucleus. We then applied the
L-RICS method to obtain diffusion maps of GFP within the nuclei
of HeLa cells (Fig. 4). As a benchmark for the method, we tried to
distinguish the different diffusion properties of GFP in the
nucleoplasm and the nucleolus. To this aim, we performed the
experiments in regions at the nucleolus/nucleoplasm interface,
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easily recognizable by the gradient in concentration of the probe
in the two compartments (Fig. 4a, b). The laser power was set at
25 µW entering the objective so that the brightness of GFP was
about 24 kHz. The pixel size was set to δx = 20 nm and the
L-RICS mask size was set to m = 25 pixels so to obtain a spatial
resolution of 500 nm. The diffusion maps obtained with 25 and
100 frames are shown in Fig. 4c, d, respectively. Since with the
used acquisition parameters (τ = 50 µs, 256 × 256 pixels) the time
needed to acquire a single frame was tframe = 3.27 s, Fig. 4d shows
that an acquisition time tacq = 100 × 3.27 s = 5.46 min is sufficient
to get an intranuclear diffusion map over an area of 5.12 × 5.12
µm2 and a signal-to-noise ratio sufficient to distinguish the dif-
ferent diffusion behavior of GFP in the nucleoplasm and the
nucleolus. The observed values of diffusion coefficient in the two
compartments (Supplementary Fig. 3) are in keeping with pre-
vious reports5. Moreover, the values of diffusion coefficients in
the L-RICS map are comparable with the values of D obtained by
performing single-point FCS measurements at various locations
on the very same area and extracted by fitting the data to a model
of a single diffusion component (Supplementary Fig. 4). In con-
trast, conventional RICS analysis performed on the whole image
area does not retrieve the correct values of diffusion coefficients
for the two compartments (Supplementary Fig. 5) and RICS
analysis performed on a small region results in an overestimation
of the diffusion coefficient (Supplementary Fig. 6).

It is worth noting that the total acquisition time tacq is
dependent mainly on the pixel dwell time τ and total number of
acquired pixels. For N frames of X × Y pixels the acquisition time
is tacq ∼ XYNτ (Fig. 4e), assuming that line and frame retracing
times are negligible. Therefore, by keeping the product XYN
constant, it is possible to further reduce the noise on the map
(increasing N) at the cost of decreasing the area of acquisition,
without increasing the total acquisition time.

For instance, if we decrease the size of the region of interest to a
64 × 256 pixels region (Fig. 4f) we need just a fourth of the time
for acquiring a diffusion map with comparable noise level and, in
the same 5.46 min, we can obtain a 400-frames diffusion map in
which we can more clearly distinguish the nuclear and nucleolar

diffusion, and have a grasp of the sub-nucleolar heterogeneity.
Pushing this methodology to its limit, we acquired single lines
inside the nucleolus itself (Fig. 4g, h) with very high statistics in a
short acquisition time, namely 0.21 and 2.13 min for acquiring
1000 and 10000 lines, respectively. These line maps have very
good signal-to-noise ratio and can be used, in principle, to
investigate the heterogeneity of diffusion within the nucleolar
environment with high spatial resolution.

Diffusion maps of GFP in the nucleolus. We performed L-RICS
of line scans across nucleoli of HeLa cells co-expressing GFP and
Fibrillarin-BFP2 in order to reveal small differences in the dif-
fusion coefficient of GFP that could be associated to the inner
structure of the nucleolus. Based on electron microscopy stu-
dies37, the nucleolus can be subdivided in three regions: the
granular component (GC), which occupies the majority of the
nucleolus, and the fibrillar centers (FC) surrounded by the dense
fibrillar component (DFC). Fibrillarin is a protein present in the
DFC and can be used as a marker to distinguish the GC from the
FC/DFC regions. However, given that the FC/DFC regions below
200 nm in size, it is not possible to resolve their inner structure, at
least in confocal microscopy.

Representative examples of these measurements are reported
on Fig. 5. As we can see (Fig. 5a, b), within the nucleolus there
may be present regions in which the structure is less compacted
(red arrows), resulting in a higher diffusion coefficient. These
regions are characterized by a GFP signal comparable to that in
the nucleoplasm and do not colocalize with the FC/DFC regions,
and may be associated with nucleolar vacuoles38,39. Interestingly,
the FC/DFC regions show a very diverse behavior when we
consider their diffusion profile; for instance, we notice that they
exhibit diffusion coefficients spanning over a relatively wide
range, namely from less than 5 µm2 s−1 (Fig. 5d, f, blue arrows) up
to more than 16 µm2 s−1 (Fig. 5b, d, f, black arrows).

In order to evaluate the spatial heterogeneity observed in the
Fibrillarin signal, we segmented the diffusion maps into two groups,
one containing the pixels with a high normalized Fibrillarin signal
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(IFIBR> 0.5) and one containing the pixels with a low normalized
Fibrillarin signal (IFIBR< 0.5), as shown in Fig. 5e. From the analysis
of a total of n = 15 cells, we computed the histograms corresponding
to the two groups that show a clearly different distribution of
diffusion coefficients (Fig. 5f–h). In particular, we find that the pixels
colocalized with the Fibrillarin signal are better described by two
distinct populations of diffusion coefficient values, namely one at D1

= 8± 1 μm2 s−1 and one at D2 = 15± 3 µm2 s−1. The FC/DFC
regions have been linked to specific functions of the nucleolar
machinery, specifically they are known to generate and accumulate
transcripts within the nucleolus before their migration to the GC37;
therefore, this difference may be due to different degrees of structural
compaction that can be related to an enhanced or reduced activity
for these processes, although further studies are needed to test this
hypothesis.

L-RICS on a CLSM with non-linear scanning system. Pixel
dwell time is a key parameter for the correct fitting of the ACF
using RICS and, in the commonly used state-of-the-art for-
mulation, it is required to be constant within the region in which
RICS is applied. This may not be true in the case of non-linear
scanning systems, i.e., setups in which the scanning speed varies
during the acquisition. For this reason, in the commercial systems
relying on non-linear scanning, the applicability of RICS has been
partly limited.

Notably, L-RICS is a local approach and only requires the
scanning speed to be approximately constant over regions as
small as the mask used for the analysis. Thus the method is not
limited to linear scanning systems and can be used to characterize
the changes of the pixel dwell time, exploiting them for correcting
the diffusion map.

In order to test the method on data acquired using non-linear
scanning, we performed experiments on a Leica SP5 microscope

using 100 Hz of line-sampling frequency and we acquired 300
frames with 80% laser power (white light laser at 488 nm,
corresponding to about 20 μW entering the objective) and δx =
20 nm. We imaged an Alexa488-labeled antibody diffusing in
solution (Fig. 6a) and computed the phase map (Fig. 6b) from
which we can clearly observe a gradient of scanning speed. Since
the heterogeneity is present only along the x direction, we
averaged the map along y in order to obtain a more statistically
robust profile, and interpolated it with a polynomial function
(Fig. 6c). By scaling this profile to our calibration function
(Fig. 1f), we could retrieve a distribution of the Kt parameter
along the x-axis that, in turn, can be scaled to a distribution of
dwell times by knowing the diffusion coefficient of the probe (D
= 30.6 µm2 s−1). We found that, with those acquisition para-
meters, the dwell time along the x-scanning direction varied from
12 to 18 µs (Supplementary Fig. 7). For the sake of clarity, it’s
worth noting that the ‘dwell-time’ τ that we are measuring here by
L-RICS is the time lag between two consecutive pixels of a line,
i.e., τ = δx/v where v is the speed of the scanner, and not the time
spent to integrate the signal at each pixel. In fact, the intensity
image is not affected by the dwell-time variations (Fig. 6a).

After characterization of the inhomogeneity of the scanning
system, we tested if the method was able to produce, after proper
correction, diffusion maps similar to those obtained on a linear
scanning setup. To this aim, we performed acquisitions at the
nucleolus/nucleoplasm interface of HeLa cells expressing GFP
(Fig. 6d) and computed the phase map obtained by L-RICS
analysis on 300 frames (Fig. 6e). This phase map encodes
variations of the local correlation functions due not only to the
value of the diffusion coefficient (for instance between nucleo-
plasm and nucleolus) but also to the value of pixel dwell time.
Indeed, the phase map is deformed toward lower values at the
borders of the image due to the slower scanning speed, as visible
from the phase profile averaged over a nucleoplasm region
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(Fig. 6e, f). As a result, the diffusion map computed using a
constant pixel dwell time (Fig. 6g) is biased at the borders toward
higher values of diffusion coefficients (+10 to +15 µm2 s−1).
Conversely, when we compute the diffusion map using the dwell
time gradient obtained from previous calibration (Fig. 6c), we get
a corrected map that shows no bias at the borders (Fig. 6h, i).

Discussion
In this work, we developed and characterized a computational
method for probing and quantifying the spatial heterogeneity of
diffusion with sub-micron resolution, based on the analysis of
images acquired on a CLSM. In terms of spatio-temporal reso-
lution and capability to explore large areas, the L-RICS method
shows intermediate features between RICS and single-point FCS.
Compared to single-point FCS, L-RICS offers several advantages.
First of all, L-RICS can be used to compute high-resolution dif-
fusion maps from images acquired on readily available confocal
microscopes, thus without the need of a dedicated setup for
acquisition of FCS data at multiple locations on the sample18,19.
Second, the use of the phasor approach as a fit-free method to
estimate the value of diffusion constant at each pixel, results in an
easy-to-use tool that does not require the fitting procedures
normally employed in FCS data analysis. Finally, the way data are
acquired in L-RICS (i.e., a series of consecutive images) is con-
venient to check for instabilities of the sample during the
acquisition (e.g., movements of the whole cell), whereas, in FCS,
these instabilities may affect directly the ACF but be of less
obvious interpretation. On the other hand, L-RICS has a major
limitation, compared to FCS: the L-RICS analysis is over-
simplified (extraction of a diffusion constant value D at each
pixel) as its main purpose is to detect spatial heterogeneities of

diffusion. Thus, the L-RICS method (at least in the present for-
mulation) does not offer the sensitivity of single-point FCS to
analyze quantitatively other processes (e.g., binding, triplet reac-
tions) occurring during diffusion. Similarly, it cannot discern
between pure Brownian motion and diffusion affected by spatial
confinement. Nevertheless, even in situations that should be
described by more complex diffusion models, L-RICS can be used
as a pre-screening assay to get a map of ‘apparent’ diffusion
constant D, useful as a guide to perform single-point FCS at
specific locations.

The L-RICS method is based on the analysis of local spatial ACFs
that are calculated over small regions and are thus sensitive to the
local value of diffusion coefficient. We have shown that, as expected,
the local ACFs are noisier when compared to the ACF calculated
over the whole image. We compensate for this by averaging the
local ACFs over a larger number of frames. Notably, we have shown
that, by using simulations, it is possible to obtain a priori infor-
mation about the signal-to-noise ratio of the map achievable with a
given experiment. In other words, if we want to obtain a diffusion
map at a given spatial resolution (determined by the size of the
mask and the pixel size) and noise below a given level, we will need
to average the local ACFs over a minimum number of frames Nmin.
In order to get an accurate map, the sample must be stationary over
the time needed to acquire Nmin frames. This may prevent appli-
cation of our method to subcellular regions and/or structures that
are relatively mobile during the acquisition and for which other
methods, based on labeling and/or tracking the organelle of interest,
appear to be more suitable31,40,41. Another factor that can limit the
duration of the experiments is represented by photobleaching
(Supplementary Fig. 8).

Nevertheless, a reduction of the whole acquisition time can
always be obtained by reducing the size of the scanned image
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(Fig. 4e). In this respect, we have demonstrated that the method
can also be applied to line scanning to produce one-dimensional
diffusion maps of very low noise in a relatively short time. It’s
worth noting that these line-RICS maps are different from those
obtainable by scanning FCS. In scanning FCS the temporal
resolution is given by the line time τl, typically in the order of ∼1
ms, providing accurate measurement of diffusion coefficients only
below Dmax ∼w2/4τl21. Even if this temporal resolution is gen-
erally sufficient to study diffusion of intracellular proteins in
confocal or 2-photon FCS (w ∼ 0.2 μm, Dmax ∼ 10 μm2 s−1), it
might be limiting in super-resolution stimulated emission
depletion (STED)–FCS, where the observation volume can be
significantly smaller42,43. In contrast, the temporal resolution of
our line-RICS maps is not limited by the line scan time and is
basically the same as in single-point FCS, making the method
compatible, at least in principle, with super-resolution, such as
STED microscopy. The combination with recently developed
methods to perform efficient STED-FCS in 3D44,45 can eventually
result in line-maps of diffusion coefficient measured at different
observation volumes, which might be useful to detect anomalies
of motion similarly to what has been done in lipid membranes46.
In particular, the coupling of L-RICS with STED–fluorescence
lifetime correlation spectroscopy (FLCS) methods45,47 would
result in the possibility of distinguishing diffusion modalities
different from pure diffusion, which as of now is a limiting factor
of the L-RICS approach.

A distinctive feature of our local analysis is that it can reveal
the potential inhomogeneity in the scanning speed of a given
setup and correct for it, therefore allowing the use of L-RICS also
in systems in which the application of RICS is less

straightforward. We believe that the generality and ease of
implementation of this method can be of great help in the study
of diffusion in the cellular environment; given that the cell is an
intrinsically heterogeneous system, in both space and time,
averaging over extensive areas can result in the loss of informa-
tion about the local dynamics, ultimately providing an inaccurate
or biased value.

In order to show that L-RICS can provide a way to overcome
this limitation, we measured the diffusion map of GFP in the
intranuclear space of HeLa cells at different levels of signal-to-
noise ratio, demonstrating that the GFP diffusion in the nucleus is
highly heterogeneous and exhibits diffusion coefficients that span
over an order of magnitude. In particular, by exploiting the high
level of signal-to-noise ratio achievable by the line-RICS maps, we
could also detect the heterogeneity of GFP diffusion within the
nucleolus. We simultaneously measured the diffusion coefficient
of FC/DFC regions and nucleolar vacuoles, reporting differences
in diffusion coefficient that are probably related to variations of
structural compaction within the nucleolus. Emerging models of
nuclear organization describe heterochromatin domains and
nucleolar subcompartments as liquid phases with distinct bio-
physical properties48,49. We believe that our method can be a
valuable tool to characterize the heterogeneous diffusion prop-
erties associated to these compartments.

Methods
Local-RICS algorithm, simulations and data analysis. The entire computational
part was performed in MatLab (Mathworks).

For every pixel (i, j) of an image Ik(x, y) the algorithm computes the local ACF
Gij

m(ξ, η) of a sub-image of size m ×m around that pixel. The 2D-ACF is calculated
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by a 2D-FFT (fast fourier transform) on the sub-image and then averaged over N
frames in order to obtain a more robust ACF. Each 2D-ACF is transformed into a
1D–ACF, by taking into account only the component along the x direction, Gij

m

(ξ) =Gij
m (ξ, 0). Since in the conditions of all our experiments the time lag between

two lines is too large to detect any correlation, this is the only meaningful
component of the 2D-ACF. The phasor variables g(i, j) and s(i, j), defined by Eq.
(3a, b), are calculated by performing a 1D-FFT on the function Gij

m(ξ). The phase
coordinate ϕ(i, j) is obtained by the simple operation:

ϕði; jÞ¼tan�1 sði; jÞ
gði; jÞ
� �

ð4Þ

Before performing the 1D-FFT, we always assign to the zero lag point of the
ACF, which contains the white noise autocorrelation, the same value as the first lag.

In order to extract a quantitative relationship between the phase value ϕ(i, j)
and the local value of diffusion coefficient D(i, j), we performed simulations of
fluorescent molecules freely diffusing with a certain diffusion constant D and
raster-scan acquisition parameters described by the sampling constants Ks and Kt

(Fig. 1a).
All simulated data were generated in SimFCS (available at www.lfd.uci.edu/

globals/). Several RICS data sets of 2500 or 500 molecules undergoing 3D diffusion
were simulated with w0 = 0.16 µm, wz = 3w0, pixel dwell time τ = 50 µs, pixel size δx
= δy = 20 nm, molecular brightness B = 24 kHz or 3MHz and several diffusion
coefficients and number of frames (Supplementary Movies 1–8). For calibration,
we obtained the reference curves ϕ(Kt) by simulating the data sets with different
diffusion coefficients in SimFCS and by plotting the retrieved average phase value
as a function of the simulated diffusion coefficient. For the acquisition parameters
and the samples chosen in this work, the calibration curve was obtained by
simulating diffusion coefficients in the range 4–36 µm2 s−1. By simulating several
data sets with high molecular brightness (B = 3MHz, 250 images) varying Kt and
keeping Ks constant (Ks = 1/8), we were able to construct a calibration curve linking
the phase to the diffusion coefficient (or to Kt itself) for the appropriate mask. The
resulting curve was then fitted to an exponential decay, the parameters of which
were stored; once the phase image ϕ(i, j) is computed for an experiment, it is
successively inverted through the appropriate calibration parameters in order to
obtain the diffusion map D(i,j).

For the analysis of data obtained in a non-linear scanning setup, we first
computed a map of dwell time τ(x, y) from the phase map shown in Fig. 6b. To this
aim, the phase map was averaged along the y-axis and fitted with a polynomial
function, in order to obtain a smoother profile. This profile was then inverted to
obtain the profile of Kt(x) along the x-axis. The dwell time was then calculated as τ
(x) = Kt(x)w0

2/4D. A dwell time map τ(x,y) was obtained by copying the dwell time
profile τ(x) along the y-axis (Supplementary Fig. 7).

A background subtraction was performed by a moving average subtraction over
time, the mean value of intensity subtracted is then added back to the image as a
constant offset. For simulations, the average over the whole data set was subtracted.

The error of the phase parameter σϕ was evaluated as the standard deviation
calculated over the entire phase image.

Conventional RICS analysis was performed by computing the spatial ACF
corresponding to the whole image area:

G ξ; ηð Þ ¼ 1
N

XN
k¼1

Ik x; yð ÞIk x þ ξ; y þ ηð Þh i
Ik x; yð Þh i2 � 1

 !
ð5Þ

and fitting the ACF to the model described by Eq. (1).

Samples. For the measurement of a dye in solution, a goat anti-mouse antibody
coupled with Alexa 488 (Life Technologies) was diluted to a concentration of
20 µg/ml in PBS.

A stable HeLa cell line expressing the protein AcGFP1 (ClonTech) was used for
all the experiments50. The day before the experiment, freshly split cells were plated
on LabTek or Ibidi 8-well chamber (glass bottom, thickness 170± 5 µm) and let
them grow overnight.

Transfection with EBFP2-Fibrillarin-7 (gift from Michael Davidson, Addgene
plasmid # 55241) was performed with Lipofectamine 2000 (Thermofisher
Scientific) following manufacturer instructions.

The brightness of AcGFP1 at different laser powers (Supplementary Fig. 9) was
measured using an aqueous solution of purified AcGFP1 (Clontech), prepared by
diluting the protein in PBS (phosphate-buffered saline 1×, Thermo Fisher
Scientific) at a final concentration of ∼100 nM. The brightness of AcGFP1 was
calculated from single point FCS measurements as B =<I>/<Nmol>, where <I> is
the average intensity and <Nmol> is the average number of particles in the confocal
volume.

Microscopes and experiments. The samples were imaged by a custom confocal
microscope or by a Leica SP5 STED confocal microscope, both equipped with Leica
1.40 NA 100× objectives (HCX PL APO 100× 1.40/0.70 Oil, Leica Microsystems).

The custom microscope was obtained as a modification of a previous setup51.
Briefly, the excitation at 485 nm was provided by a picosecond (<100 ps) pulsed
(80MHz) laser diode (LDH-D-C-485 Sepia, PicoQuant). Excitation at 405 nm was
provided by a CW laser diode (Cube 405, Coherent). The two beams were

combined using two dichroic mirrors, then deflected by two galvanometric
scanning mirrors (6215HM40B, CTI-Cambridge) and directed toward the objective
by the same set of scan and tube lenses as the ones used in a commercial scanning
microscope (Leica TCS SP5, Leica Microsystems). The fluorescence light was
collected by the same objective lens, de-scanned, passed through the dichroic
mirrors, then separated in two channels (525/50 nm and 445/45) before being
focused (focal length 60 mm, AC254-060-AML,Thorlabs) into fiber pigtailed
single-photon avalanche diodes (PDM Series, Micro Photon Devices). All imaging
operations were automated and managed by the software Imspector (Max Planck
Innovation). For single-point FCS, photons were detected by a TCSPC (Time
Correlated Single Photon Counting) card (SPC-830, Becker & Hickl), synchronized
with the reference signal provided by the pulsed diode laser. The power of the laser
beam was always measured before entering the objective. Due to losses in the
objective lens, the power at the sample is actually lower by 15%.

For FCS measurements, ten data sets with 30 s acquisition time were acquired at
a laser power of 9 µW. The raw data were processed for afterpulse removal using a
custom FLCS algorithm45.

Custom code. A version of the L-RICS algorithm running under Matlab is pro-
vided in Supplementary Software 1.

Data availability. Simulated RICS data sets are provided as Supplementary
Movies 1–8. The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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