Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol

Abstract

Molecular catalysts play a significant role in chemical transformations, utilizing changes in redox states to facilitate reactions. To date molecular electrocatalysts have efficiently produced single-carbon products from CO2 but have struggled to achieve a carbon–carbon coupling step. Conversely, copper catalysts can enable carbon–carbon coupling, but lead to broad C2+ product spectra. Here we subvert the traditional redox-mediated reaction mechanisms of organometallic compounds through a heterogeneous nickel-supported iron tetraphenylporphyrin electrocatalyst, facilitating electrochemical carbon–carbon coupling to produce ethanol. This represents a marked behavioural shift compared with carbon-supported metalloporphyrins. Extending the approach to a three-dimensional porous nickel support with adsorbed iron tetraphenylporphyrin, we attain ethanol Faradaic efficiencies of 68% ± 3.2% at −0.3 V versus a reversible hydrogen electrode (pH 7.7) with partial ethanol current densities of −21 mA cm−2. Separately we demonstrate maintained ethanol production over 60 h of operation. Further consideration of the wide parameter space of molecular catalyst and metal electrodes shows promise for additional chemistries and achievable metrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Redox- and non-redox-mediated electrochemical CO2 reduction pathways on supported organometallic catalysts.
Fig. 2: Computed interactions of a combined Fe-TPP/Ni catalyst and electrochemical characterization.
Fig. 3: Characterization and performance of Fe-TPP/Ni and Fe-TPP/C electrodes in CO₂ electroreduction.
Fig. 4: Computational calculations comparing Fe-TPP/Ni and Fe-TPP/C.
Fig. 5: Long-term stability of a 3D Fe-TPP/Ni.

Similar content being viewed by others

Data availability

The raw and processed data that support the findings of this study are publicly available in the 4TU.ResearchData database with the identifier https://doi.org/10.4121/9247f0c0-aa90-4407-a81f-afe5809fe2bb.

References

  1. Costentin, C., Robert, M. & Savéant, J.-M. Molecular catalysis of electrochemical reactions. Curr. Opin. Electrochem. 2, 26–31 (2017).

    Article  CAS  Google Scholar 

  2. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    Article  PubMed  Google Scholar 

  4. Bhugun, I., Lexa, D. & Savéant, J. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergystic effect of weak Brönsted acids. J. Am. Chem. Soc. 118, 1769–1776 (1996).

    Article  CAS  Google Scholar 

  5. Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article  CAS  Google Scholar 

  6. Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song, Y. et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016).

    Article  CAS  Google Scholar 

  8. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  9. Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    Article  CAS  Google Scholar 

  10. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  11. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  12. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  CAS  Google Scholar 

  13. Liang, Z.-Q. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 9, 3828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    Article  CAS  Google Scholar 

  15. Abdinejad, M. et al. Electrocatalytic reduction of CO2 to CH4 and CO in aqueous solution using pyridine–porphyrins immobilized onto carbon nanotubes. ACS Sustain. Chem. Eng. 8, 9549–9557 (2020).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  17. Abdinejad, M. et al. Electroreduction of carbon dioxide to acetate using heterogenized hydrophilic manganese porphyrins. Chem. Eur. J. 29, e202203977 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Savéant, J.-M. Molecular catalysis of electrochemical reactions. mechanistic aspects. Chem. Rev. 108, 2348–2378 (2008).

    Article  PubMed  Google Scholar 

  19. Jackson, M. N., Kaminsky, C. J., Oh, S., Melville, J. F. & Surendranath, Y. Graphite conjugation eliminates redox intermediates in molecular electrocatalysis. J. Am. Chem. Soc. 141, 14160–14167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tilley, S. D. Metal-like molecules. Nat. Catal. 5, 359–360 (2022).

    Article  Google Scholar 

  21. Murphy, B. E. et al. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano 8, 5190–5198 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Duncan, D. A. et al. Immobilised molecular catalysts and the role of the supporting metal substrate. Chem. Commun. 51, 9483–9486 (2015).

    Article  CAS  Google Scholar 

  23. Petraki, F. et al. Impact of the 3d electronic states of cobalt and manganese phthalocyanines on the electronic structure at the interface to Ag(111). J. Phys. Chem. C 115, 21334–21340 (2011).

    Article  CAS  Google Scholar 

  24. Petraki, F. et al. Modification of the 3d-electronic configuration of manganese phthalocyanine at the interface to gold. J. Phys. Chem. C 116, 5121–5127 (2012).

    Article  CAS  Google Scholar 

  25. Petraki, F. et al. Interaction between cobalt phthalocyanine and gold studied by X-ray absorption and resonant photoemission spectroscopy. J. Phys. Chem. Lett. 1, 3380–3384 (2010).

    Article  CAS  Google Scholar 

  26. Uihlein, J. et al. Communication: influence of graphene interlayers on the interaction between cobalt phthalocyanine and Ni(111). J. Chem. Phys. 138, 81101–81104 (2013).

    Article  Google Scholar 

  27. Schmid, M., Kaftan, A., Steinrück, H.-P. & Gottfried, J. M. The electronic structure of cobalt(II) phthalocyanine adsorbed on Ag(111). Surf. Sci. 606, 945–949 (2012).

    Article  CAS  Google Scholar 

  28. Costentin, C., Robert, M. & Savéant, J.-M. Current Issues in molecular catalysis illustrated by iron porphyrins as catalysts of the CO2-to-CO electrochemical conversion. Acc. Chem. Res. 48, 2996–3006 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008); https://doi.org/10.1007/978-0-387-49489-0_3

  30. Zhou, Y. et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat. Catal. 5, 545–554 (2022).

    Article  CAS  Google Scholar 

  31. Zeng, Z. et al. Orbital coupling of hetero-diatomic nickel–iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Westre, T. E. et al. A multiplet analysis of Fe K-Edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 119, 6297–6314 (1997).

    Article  CAS  Google Scholar 

  33. Römelt, C. et al. Electronic structure of a formal iron(0) porphyrin complex relevant to CO2 reduction. Inorg. Chem. 56, 4745–4750 (2017).

    Article  Google Scholar 

  34. Kumar, A. Interfacial electronic properties of FeTPP-Cl on HOPG. Mater. Today Proc. 57, 898–901 (2022).

    Article  CAS  Google Scholar 

  35. Vos, R. E. & Koper, M. T. M. Nickel as electrocatalyst for CO2 reduction: effect of temperature, potential, partial pressure, and electrolyte composition. ACS Catal. https://doi.org/10.1021/acscatal.4c00009 (2024).

  36. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  37. Li, N., Su, Z., Coppens, P. & Landrum, J. X-ray diffraction study of the electronic ground state of (meso-tetraphenylporphinato)iron(II). J. Am. Chem. Soc. 112, 7294–7298 (1990).

    Article  CAS  Google Scholar 

  38. Hunter, S. C. et al. Intermolecular interactions in solid-state metalloporphyrins and their impacts on crystal and molecular structures. Inorg. Chem. 53, 11552–11562 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Hereijgers, J., Schalck, J., Lölsberg, J., Wessling, M. & Breugelmans, T. Indirect 3D printed electrode mixers. ChemElectroChem https://doi.org/10.1002/celc.201801436 (2019).

  40. Hereijgers, J., Schalck, J. & Breugelmans, T. Mass transfer and hydrodynamic characterization of structured 3D electrodes for electrochemistry. Chem. Eng. J. 384, 123283 (2019).

    Article  Google Scholar 

  41. Abdinejad, M. et al. Enhanced electrochemical reduction of CO2 catalyzed by cobalt and iron amino porphyrin complexes. ACS Appl. Energy Mater. 2, 1330–1335 (2019).

    Article  CAS  Google Scholar 

  42. Abdinejad, M., Dao, C., Zhang, X. & Kraatz, H. B. Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO. J. Energy Chem. 58, 162–169 (2021).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  46. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

  47. Al-Mahayni, H., Wang, X., Harvey, J.-P., Patience, G. S. & Seifitokaldani, A. Experimental methods in chemical engineering: density functional theory. Can. J. Chem. Eng. 99, 1885–1911 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.M.-G. and F.M. acknowledge NWO project 15169 for infrastructure support. A.S. acknowledges support received from an NSERC Discovery Grant (RGPIN-2020-04960) and the Canada Research Chair (950-23288). M.R. acknowledges the Institut Universitaire de France (IUF) for partial financial support. The DFT computations carried out in this study was supported by Calcul Quebec, Compute Canada. The XAS measurements were performed at the Canadian Light Source (CLS) under project 36G12729. T.B. thanks E. Pidko and M. Jackson for mechanistic discussions during the project, and D. Ripepi for the SEM study.

Author information

Authors and Affiliations

Authors

Contributions

M.A. conceived the initial project. M.A. synthesized the molecular catalysts. R.M.-G. designed and built the flow cell and the 3D structured nickel and carbon electrodes. M.A. and R.M.-G. set up, performed and optimized cell design for the initial sets of flow experiments leading to ethanol formation. M.A. performed the parameterization and stability tests of the 3D porous electrode flow-cell experiments and the 3D electrode material characterizations. A.F. and A.S. performed the DFT computations, and analysed and discussed the results. A.F. also performed the XAS experiments. A.S. supervised the computations and the in situ XAS experiments. C.L. and J.S. performed the CO2 and CO experiments of Fe-TPP drop-cast on nickel foam, which were supervised and checked by M.R. T.B. supervised the project. The work was written and edited by all coauthors.

Corresponding authors

Correspondence to Maryam Abdinejad, Ali Seifitokaldani or Thomas Burdyny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Joshua Wright and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–4 and Discussion.

Supplementary Data 1

DFT data coordinates.

Supplementary Data 2

ChemDraw file for Fig. S12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdinejad, M., Farzi, A., Möller-Gulland, R. et al. Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01225-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing