Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density

Abstract

Alkaline oxygen evolution reaction is critical for green hydrogen production from water electrolysis but encounters great challenges when operated at industry-required ampere-scale current densities, such as insufficient mass transfer, reduced catalytic activity and limited lifetimes. Here we develop a one-step seed-assisted heterogeneous nucleation method (25 °C, 24 h) for producing a nickel–iron-based electrocatalyst (CAPist-L1, where CAP refers to the centre of artificial photosynthesis) for robust oxygen evolution reaction at ≥1,000 mA cm−2. Based on the insoluble nanoparticles in the heterogeneous nucleation system, a dense interlayer is formed that anchors the catalyst layer tightly on the substrate, ensuring stable long-term durability of 15,200 h (>21 months) in 1 M KOH at 1,000 mA cm−2. When applying CAPist-L1 as the anode catalyst in practical anion exchange membrane water electrolysis, it delivers a high activity of 7,350 mA cm−2 at 2.0 V and good stability at 1,000 mA cm−2 for 1,500 h at 80 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of OER catalyst CAPist-L1.
Fig. 2: OER performance of the CAPist-L1 evaluated in 1 M KOH.
Fig. 3: Observation of interlayer in CAPist-L1.
Fig. 4: Performance of the CAPist-L1//Ni4Mo/MoO2 AEM-WE electrolyser.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).

    Article  CAS  Google Scholar 

  2. Wang, J. et al. Non-precious metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154–9196 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Niether, C. et al. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Energy 3, 476–483 (2018).

    Article  CAS  Google Scholar 

  4. Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis. Science 380, 609–616 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, J. et al. IrOx·nH2O with lattice water–assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. Sci. Adv. 9, eadh1718 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. King, L. A. et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, C. et al. In situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).

    Article  CAS  Google Scholar 

  9. Liu, Y. et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 9, 2609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zou, X. et al. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017).

    Article  Google Scholar 

  11. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  12. Liang, C. et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020).

    Article  CAS  Google Scholar 

  13. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Du, K. et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nat. Commun. 13, 5448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang, L. et al. Ultrathin iron–cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29, 1606793 (2017).

    Article  Google Scholar 

  18. Merrill, M. D. & Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008).

    Article  CAS  Google Scholar 

  19. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Corrigan, D. A. & Bendert, R. M. Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1 M KOH. J. Electrochem. Soc. 136, 723 (1989).

    Article  CAS  Google Scholar 

  21. Li, X., Walsh, F. C. & Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 13, 1162–1167 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Hall, D. E. Ni(OH)2‐impregnated anodes for alkaline water electrolysis. J. Electrochem. Soc. 130, 317 (1983).

    Article  CAS  Google Scholar 

  23. Ding, G. et al. Highly efficient and durable anion exchange membrane water electrolyzer enabled by a Fe–Ni3S2 anode catalyst. Adv. Energy Sustain. Res. 4, 2200130 (2023).

    Article  CAS  Google Scholar 

  24. Karunadasa, H. I. et al. A molecular MoS2-edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, L. et al. Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2021).

    Article  CAS  Google Scholar 

  26. Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

    Article  CAS  Google Scholar 

  27. Zhai, P. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel–iron layered double hydroxide for overall water splitting. Nat. Commun. 12, 4587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    Article  CAS  Google Scholar 

  29. Iwata, R. et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting. Joule 5, 887–900 (2021).

    Article  CAS  Google Scholar 

  30. Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  Google Scholar 

  31. Liu, H. et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2. Nat. Commun. 13, 6382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao, X., Wang, L., Wang, Z. & Wang, Z. Superheating of grain boundaries within bulk colloidal crystals. Nat. Commun. 13, 1599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, R. et al. Layered structure causes bulk NiFe-layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 31, 1903909 (2019).

    Article  CAS  Google Scholar 

  34. Wu, Y.-j et al. Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60, 26829–26836 (2021).

    Article  CAS  Google Scholar 

  35. Li, Y. et al. Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Appl. Catal. B 318, 121825 (2022).

    Article  CAS  Google Scholar 

  36. Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).

    Article  Google Scholar 

  37. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. et al. Ultrafast room-temperature synthesis of self-supported NiFe-layered double hydroxide as large-current-density oxygen evolution electrocatalyst. Small 18, 2104354 (2022).

    Article  CAS  Google Scholar 

  39. Xu, X. et al. Highly efficient all-3D-printed electrolyzer toward ultrastable water electrolysis. Nano Lett. 23, 629–636 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, F., Kim, M. J., Brown, M. & Wiley, B. J. Alkaline water electrolysis at 25 A cm−2 with a microfibrous flow-through electrode. Adv. Energy Mater. 10, 2001174 (2020).

    Article  CAS  Google Scholar 

  41. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  42. Mayerhöfer, B. et al. Electrochemical and mechanical stability of catalyst layers in anion exchange membrane water electrolysis. Int. J. Hydrog. Energy 47, 4304–4314 (2022).

    Article  Google Scholar 

  43. Liang, C. et al. Highly conductive and mechanically robust NiFe alloy aerogels: an exceptionally active and durable water oxidation catalyst. Small 18, 2203663 (2022).

    Article  CAS  Google Scholar 

  44. Ding, Z. et al. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020).

    Article  CAS  Google Scholar 

  45. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  CAS  Google Scholar 

  46. Kim, Y. S. Scalable Elastomeric Membranes for Alkaline Water Electrolysis (US Department of Energy, 2019).

  47. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Khaselev, O. & Turner, J. A. A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  50. Abellán, G., Coronado, E., Martí-Gastaldo, C., Pinilla-Cienfuegos, E. & Ribera, A. Hexagonal nanosheets from the exfoliation of Ni2+–Fe3+ LDHs: a route towards layered multifunctional materials. J. Mater. Chem. 20, 7451–7455 (2010).

    Article  Google Scholar 

  51. Saiah, F. B. D., Su, B.-L. & Bettahar, N. Removal of Evans blue by using nickel–iron layered double hydroxide (LDH) nanoparticles: effect of hydrothermal treatment temperature on textural properties and dye adsorption. Macromol. Symp. 273, 125–134 (2008).

    Article  CAS  Google Scholar 

  52. Zhang, J. et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, L. et al. Vertical growth of 2D amorphous-FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv. Mater. 29, 1704574 (2017).

    Article  Google Scholar 

  54. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Jeon, S. S. et al. Active surface area and intrinsic catalytic oxygen evolution reactivity of NiFe LDH at reactive electrode potentials using capacitances. ACS Catal. 13, 1186–1196 (2023).

    Article  CAS  Google Scholar 

  56. Liu, C. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 4, 36–45 (2021).

    Article  CAS  Google Scholar 

  57. Anantharaj, S. et al. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci. 11, 744–771 (2018).

    Article  CAS  Google Scholar 

  58. Fan, L. et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Sonoyama, N. & Sakata, T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 33, 3438–3442 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFA0911902), National Natural Science Foundation of China (22088102) and the Research Center for Industries of the Future (RCIF) at Westlake University, China Postdoctoral Science Foundation (2022M712837 and 2023M733175). The authors thank X. Miao at the Instrumentation and Service Center for Physical Science (ISCPS) at Westlake University for her help with the in situ XRD analysis and Y. Ding at the Center of Artificial Photosynthesis for Solar Fuels and the Department of Chemistry at Westlake University for his help in verifying the structure of CAPist-L1 from the point of view of theoretical calculation. We also acknowledge the support from the BL11B station in Shanghai Synchrotron Radiation Facility (SSRF) for the X-ray absorption spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology: Z.L. and L.S. Material—synthesis, characterization and test: Z.L., G.L., L.W., G.D., R.R., X.C., S.D., W. Ye and W. Yang. AEM—assemble and test: Z.L., H.L., J.D., T.T. and W.L. Data analysis: Z.L. and G.L. Supervision: L.S. Writing—original draft: Z.L. and G.L. Writing—review and editing: Z.L., G.L., W. Yang and L.S.

Corresponding author

Correspondence to Licheng Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40, Notes 1–7, Tables 1–3 and References 1–77.

Supplementary Data 1

Material characterization (for example, XRD, Raman, X-ray absorption spectroscopy, XPS, BET, ESCA, surface active sites, loading mass, grazing incidence XRD, XPS-etching and in situ XRD), electrochemical measurements (for example, LSV, CV and EIS) and other analysis (for example, bubble size statistic, bubble size distribution, loading force, pH test and ICP-MS) for the catalysts.

Source data

Source Data Fig. 1

Nanoparticles statistics and XRD pattern analysis.

Source Data Fig. 2

OER activity and stability measurements of catalyst.

Source Data Fig. 4

AEM-WE activity and stability measurements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lin, G., Wang, L. et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat Catal 7, 944–952 (2024). https://doi.org/10.1038/s41929-024-01209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01209-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing