Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iridium nitrenoid-enabled arene C−H functionalization

Abstract

Direct arene C−H functionalization via nucleophilic aromatic substitution remains a challenging task. Here we report an iridium nitrenoid-catalysed arene C−H functionalization strategy, making use of readily available aryl azides as electrophiles to react with different nucleophilic reaction partners. The practicality of this methodology is demonstrated by enantioselective synthesis of chiral 2-amino-2′-hydroxy-1,1′-binaphthyl, a class of building blocks, ligands and catalysts in asymmetric transformation, using β-naphthols and β-naphthyl azides as starting materials under the catalysis of a tailored oxazoline-chelated iridium complex. Mechanistic studies and density functional theory calculations show that the reaction proceeds through an iridium nitrenoid-mediated C−H functionalization pathway. The reported arene C−H functionalization strategy serves as a blueprint to expand the applicability of nucleophilic aromatic substitution reactions and is particularly valuable for the synthesis of aniline-containing molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introduction to arene C–H functionalization and metal nitrenoid in activation.
Fig. 2: Iridium nitrenoid-mediated C–H functionalization of aryl azides with different nucleophiles.
Fig. 3: Asymmetric synthesis of NOBINs via an iridium nitrenoid-mediated C–H functionalization of β-naphthyl azides with β-naphthols.
Fig. 4: Generality of the reaction.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures of 3a-a and Ir16 reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2299324 (3a-a) and 2237480 (Ir16). These data can be obtained free of charge from http://www.ccdc.cam.ac.uk/data_request/cif. Reaction optimization, experimental procedures, characterization of new compounds and mechanistic studies are available in the Supplementary Information or from the corresponding authors upon reasonable request.

References

  1. Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L. & Ritter, T. A perspective on late-stage aromatic C–H bond functionalization. J. Am. Chem. Soc. 144, 2399–2414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brückl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    Article  PubMed  Google Scholar 

  5. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holmberg-Douglas, N. & Nicewicz, D. A. Photoredox-catalyzed C–H functionalization reactions. Chem. Rev. 122, 1925–2016 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barranco, S., Zhang, J., López-Resano, S., Casnati, A. & Pérez-Temprano, M. H. Transition metal-catalysed directed C–H functionalization with nucleophiles. Nat. Synth. 1, 841–853 (2022).

    Article  Google Scholar 

  10. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramadoss, B., Jin, Y., Asako, S. & Ilies, L. Remote steric control for undirected meta-selective C–H activation of arenes. Science 375, 658–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Nagib, D. A. & MacMillan, D. W. C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature 480, 224–228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto, K. et al. Palladium-catalysed electrophilic aromatic C–H fluorination. Nature 554, 511–514 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Berger, F. et al. Site-selective and versatile aromatic C−H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Lv, J. et al. Metal-free directed sp2-C–H borylation. Nature 575, 336–340 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara, Y. et al. Practical and innate carbon–hydrogen functionalization of heterocycles. Nature 492, 95–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).

    Article  CAS  Google Scholar 

  19. Rossi, R. A., Pierini, A. B. & Peñéñory, A. B. Nucleophilic substitution reactions by electron transfer. Chem. Rev. 103, 71–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Ma̧kosza, M. & Wojciechowski, K. Application of vicarious nucleophilic substitution in organic synthesis. Liebigs Ann. Recl. 1997, 1805–1816 (1997).

    Article  Google Scholar 

  21. Wilson, A. S. S., Hill, M. S., Mahon, M. F., Dinoi, C. & Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene. Science 358, 1168–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fier, P. S. & Hartwig, J. F. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342, 956–960 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Hilton, M. C., Dolewski, R. D. & McNally, A. Selective functionalization of pyridines via heterocyclic phosphonium salts. J. Am. Chem. Soc. 138, 13806–13809 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Ju, M. & Schomaker, J. M. Nitrene transfer catalysts for enantioselective C–N bond formation. Nat. Rev. Chem. 5, 580–594 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    Article  CAS  Google Scholar 

  27. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ye, C. X., Shen, X., Chen, S. & Meggers, E. Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids. Nat. Chem. 14, 566–573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin, L.-M., Xu, P., Xie, J. & Zhang, X. P. Enantioselective intermolecular radical C–H amination. J. Am. Chem. Soc. 142, 20828–20836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hong, S. Y., Hwang, Y., Lee, M. & Chang, S. Mechanism-guided development of transition metal-catalyzed C–N bond-forming reactions using dioxazolones as the versatile amidating source. Acc. Chem. Res. 54, 2683–2700 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, H. et al. Nitrene-mediated intermolecular N–N coupling for efficient synthesis of hydrazides. Nat. Chem. 13, 378–385 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Kurup, S. S. & Groysman, S. Catalytic synthesis of azoarenes via metal-mediated nitrene coupling. Dalton Trans. 51, 4577–4589 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Intrieri, D., Zardi, P., Caselli, A. & Gallo, E. Organic azides: “energetic reagents” for the intermolecular amination of C–H bonds. Chem. Commun. 50, 11440–11453 (2014).

    Article  CAS  Google Scholar 

  35. Shin, K., Kim, H. & Chang, S. Transition metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc. Chem. Res. 48, 1040–1052 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Z., Kacmaz, A. & Xiao, J. Recent development in the synthesis and catalytic application of iridacycles. Chem. Rec. 21, 1506–1534 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Knox, A. J. S. et al. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J. Med. Chem. 52, 2177–2180 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    Article  CAS  Google Scholar 

  39. Yue, Q., Liu, B., Liao, G. & Shi, B.-F. Binaphthyl scaffold: a class of versatile structure in asymmetric C–H functionalization. ACS Catal. 12, 9359–9396 (2022).

    Article  CAS  Google Scholar 

  40. Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).

    Article  CAS  Google Scholar 

  41. Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

  43. Zhao, X.-J. et al. Enantioselective synthesis of 3,3′-disubstituted 2-amino-2′-hydroxy-1,1′-binaphthyls by copper-catalyzed aerobic oxidative cross-coupling. Angew. Chem. Int. Ed. 60, 7061–7065 (2021).

    Article  CAS  Google Scholar 

  44. Dyadyuk, A. et al. A chiral iron disulfonate catalyst for the enantioselective synthesis of 2-amino-2′-hydroxy-1,1′-binaphthyls (NOBINs). J. Am. Chem. Soc. 144, 3676–3684 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Qi, L.-W., Li, S., Xiang, S.-H., Wang, J. & Tan, B. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nat. Catal. 2, 314–323 (2019).

    Article  CAS  Google Scholar 

  46. Mas-Roselló, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).

    Article  PubMed  Google Scholar 

  47. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019).

    Article  CAS  Google Scholar 

  48. Wang, H. et al. Iridium-catalyzed enantioselective C(sp3)–H amidation controlled by attractive noncovalent interactions. J. Am. Chem. Soc. 141, 7194–7201 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Boutadla, Y., Davies, D. L., Jones, R. C. & Singh, K. The scope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium, rhodium and ruthenium. Chem. Eur. J. 17, 3438–3448 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge generous support by the Alexander von Humboldt Foundation (Feodor Lynen fellowship, T.R.) and the National Science Foundation (CHE-1764328, K.N.H.). Y.L. thanks the Singapore National Research Foundation (NRF), Prime Minister’s Office for the NRF Investigatorship Award (A-0004067-00-00) and the National University of Singapore (A-8001466-00-00) and Ministry of Education (MOE) of Singapore (A-0008481-00-00) for generous financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.-W.Q. carried out the experiments and wrote the first draft of the paper. T.R. performed the DFT calculation. L.-W.Q., K.N.H. and Y.L. conceived the project. The paper was written through contributions from all authors. Y.L. supervised the project.

Corresponding authors

Correspondence to K. N. Houk or Yixin Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–9.

Supplementary Data 1

Crystallographic data of 3aa.

Supplementary Data 2

Crystallographic data of Ir16.

Supplementary Data 3

Cartesian coordinates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, LW., Rogge, T., Houk, K.N. et al. Iridium nitrenoid-enabled arene C−H functionalization. Nat Catal 7, 934–943 (2024). https://doi.org/10.1038/s41929-024-01207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01207-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing