Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon monoxide enabling synergistic carbonylation and (hetero)aryl migration

Abstract

The activation and transformation of carbon monoxide (CO), a versatile C1 feedstock, continues to attract substantial attention. Traditionally, researchers have focused on the development of catalytic systems to activate CO and then quench the generated acyl intermediate with nucleophiles to complete the carbonylative transformations. Here, non-classically, we unveil a visible-light-induced, carbonylation-triggered radical relay rearrangement reaction, in which the CO insertion step is a key element for functional group migration. The selective insertion of a carbonyl group into the newly generated carbon radical provides a bridge for (hetero)aryl group migration, and the positive feedback of group migration also enables the carbon radical to capture CO more efficiently. A series of 1,4-dicarbonyl compounds containing fluoroalkyl and heterocycles are synthesized successfully under mild conditions, and the conversion of the products to valuable heteroaromatic biaryls indicates the synthetic potential of this platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and introduction of carbonylation-triggered aryl/heteroaryl migration utilizing CO.
Fig. 2: Carbonylation-triggered migration.
Fig. 3: Expanding the radical scope and scale-up reaction.
Fig. 4: Modification of bioactive molecules.
Fig. 5: Mechanistic studies and derivatization of 1,4-diketone compounds.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information or from the corresponding author upon request. The X-ray crystallographic coordinates for structure 6b reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2306994. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Wu, X.-F., Han, B., Ding, K., Liu Z. eds. The Chemical Transformations of C1 Compounds (Wiley-VCH, 2022).

  2. Gabriele, B. Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry (Wiley-VCH, 2021).

  3. Haynes, A. et al. Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the Cativa process. J. Am. Chem. Soc. 126, 2847–2861 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Dekleva, T. W. & Forster, D. The rhodium-catalyzed carbonylation of linear primary alcohols. J. Am. Chem. Soc. 107, 3565–3567 (1985).

    Article  CAS  Google Scholar 

  5. Zhang, S., Neumann, H. & Beller, M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem. Soc. Rev. 49, 3187–3210 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Peng, J.-B., Wu, F.-P. & Wu, X.-F. First-row transition metal-catalyzed carbonylative transformations of carbon electrophiles. Chem. Rev. 119, 2090–2127 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Peng, J.-B., Qi, X. & Wu, X.-F. Visible light induced carbonylation reactions with organic dyes as the photosensitizers. ChemSusChem 9, 2279–2283 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Gu, X.-W., Zhang, Y., Zhao, F., Ai, H.-J. & Wu, X.-F. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex. Chin. J. Catal. 48, 214–223 (2023).

    Article  CAS  Google Scholar 

  9. Li, Y., Hu, Y. & Wu, X.-F. Non-noble metal-catalysed carbonylative transformations. Chem. Soc. Rev. 47, 172–194 (2018).

    Article  PubMed  Google Scholar 

  10. Omann, L. et al. Electrophilic formylation of arenes by silylium ion-mediated activation of carbon monoxide. Angew. Chem. Int. Ed. 57, 8301–8305 (2018).

    Article  CAS  Google Scholar 

  11. Kai, H., Iwamoto, K., Chatani, N. & Murai, S. Ynolates from the reaction of lithiosilyldiazomethane with carbon monoxide. New ketenylation reactions. J. Am. Chem. Soc. 118, 7634–7635 (1996).

    Article  CAS  Google Scholar 

  12. Zhou, M., Zhao, H. Y., Zhang, S., Zhang, Y. & Zhang, X. Nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm of CO. J. Am. Chem. Soc. 142, 18191–18199 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, X. et al. Divergent aminocarbonylations of alkynes enabled by photoredox/nickel dual catalysis. Angew. Chem. Int. Ed. 60, 26511–26517 (2021).

    Article  CAS  Google Scholar 

  14. Day, C. S., Ton, S. J., Kaussler, C., Vronning Hoffmann, D. & Skrydstrup, T. Low pressure carbonylation of benzyl carbonates and carbamates for applications in 13C isotope labeling and catalytic CO2 reduction. Angew. Chem. Int. Ed. 62, e202308238 (2023).

    Article  CAS  Google Scholar 

  15. Tung, P. & Mankad, N. P. Light-mediated synthesis of aliphatic anhydrides by Cu-catalyzed carbonylation of alkyl halides. J. Am. Chem. Soc. 145, 9423–9427 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Ding, Y., Wu, J. & Huang, H. Carbonylative formal cycloaddition between alkylarenes and aldimines enabled by palladium-catalyzed double C–H bond activation. J. Am. Chem. Soc. 145, 4982–4988 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science 368, 318–323 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Tani, A. et al. Atom-economical synthesis of unsymmetrical ketones through photocatalyzed C–H activation of alkanes and coupling with CO and electrophilic alkenes. Angew. Chem. Int. Ed. 50, 1869–1872, (2011).

    Article  Google Scholar 

  19. Matsubara, H., Kawamoto, T., Fukuyama, T. & Ryu, I. Applications of radical carbonylation and amine addition chemistry: 1,4-hydrogen transfer of 1-hydroxylallyl radicals. Acc. Chem. Res. 51, 2023–2035 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Yin, Z., Rabeah, J., Brückner, A. & Wu, X.-F. Gallic acid-promoted SET process for cyclobutanone oximes activation and (carbonylative-)alkylation of olefins. ACS Catal. 8, 10926–10930 (2018).

    Article  CAS  Google Scholar 

  21. Sumino, S., Fusano, A., Fukuyama, T. & Ryu, I. Carbonylation reactions of alkyl iodides through the interplay of carbon radicals and Pd catalysts. Acc. Chem. Res. 47, 1563–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Rojas, C. M. Molecular Rearrangements in Organic Synthesis (Wiley-VCH, 2015).

  23. Studer, A. & Bossart, M. Radical aryl migration reactions. Tetrahedron 57, 9649–9667 (2001).

    Article  CAS  Google Scholar 

  24. Chen, Z.-M., Zhang, X.-M. & Tu, Y.-Q. Radical aryl migration reactions and synthetic applications. Chem. Soc. Rev. 44, 5220–5245 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z.-L., Li, X.-H., Wang, N., Yang, N.-Y. & Liu, X.-Y. Radical-mediated 1,2-formyl/carbonyl functionalization of alkenes and application to the construction of medium-sized rings. Angew. Chem. Int. Ed. 55, 15100–15104 (2016).

    Article  CAS  Google Scholar 

  26. Sivaguru, P., Wang, Z., Zanoni, G. & Bi, X. Cleavage of carbon-carbon bonds by radical reactions. Chem. Soc. Rev. 48, 2615–2656 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kischkewitz, M., Okamoto, K., Mück-Lichtenfeld, C. & Studer, A. Radical-polar crossover reactions of vinylboron ate complexes. Science 355, 936–938 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, D., Muck-Lichtenfeld, C., Daniliuc, C. G. & Studer, A. Radical aryl migration from boron to carbon. J. Am. Chem. Soc. 143, 9320–9326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y., Du, J. & Zuo, Z. Selective C–C bond scission of ketones via visible-light-mediated cerium catalysis. Chem 6, 266–279 (2020).

    Article  CAS  Google Scholar 

  31. Friese, F. W., Muck-Lichtenfeld, C. & Studer, A. Remote C–H functionalization using radical translocating arylating groups. Nat. Commun. 9, 2808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, K. et al. Functional-group translocation of cyano groups by reversible C–H sampling. Nature 620, 1007–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, X., Ma, Z., Feng, T. & Zhu, C. Radical-mediated rearrangements: past, present, and future. Chem. Soc. Rev. 50, 11577–11613 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Peng, J.-B., Geng, H.-Q. & Wu, X.-F. The chemistry of CO: carbonylation. Chem 5, 526–552 (2019).

    Article  CAS  Google Scholar 

  35. Chatgilialoglu, C., Crich, D., Komatsu, M. & Ryu, I. Chemistry of acyl radicals. Chem. Rev. 99, 1991–2070 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, F., Gu, X.-W., Franke, R. & Wu, X.-F. Copper-catalyzed 1,2-dicarbonylative cyclization of alkenes with alkyl bromides via radical cascade process. Angew. Chem. Int. Ed. 61, e202214812 (2022).

    Article  CAS  Google Scholar 

  37. Tsunoi, S., Ryu, I. & Sonoda, N. Remote carbonylation. The synthesis of δ-lactones from saturated alcohols and carbon monoxide. J. Am. Chem. Soc. 116, 5473–5474 (1994).

    Article  CAS  Google Scholar 

  38. Matcha, K. & Antonchick, A. P. Metal-free cross-dehydrogenative coupling of heterocycles with aldehydes. Angew. Chem. Int. Ed. 52, 2082–2086 (2013).

    Article  CAS  Google Scholar 

  39. Wang, Y., Zhang, J.-X. & Shu, W. Cu-catalyzed remote transarylation of amines via unstrained C–C functionalization. ACS Catal. 10, 15065–15070 (2020).

    Article  CAS  Google Scholar 

  40. Li, J., Liu, Z., Wu, S. & Chen, Y. Acyl radical Smiles rearrangement to construct hydroxybenzophenones by photoredox catalysis. Org. Lett. 21, 2077–2080 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl-Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Huang, H. et al. Sustainable radical cascades to synthesize difluoroalkylated pyrrolo[1,2-a]indoles. J. Org. Chem. 83, 2425–2437 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bao, Z.-P. & Wu, X.-F. Palladium-catalyzed direct carbonylation of bromoacetonitrile to synthesize 2-cyano-N-acetamide and 2-cyanoacetate compounds. Angew. Chem. Int. Ed. 62, e202301671 (2023).

    Article  CAS  Google Scholar 

  45. Chen, S., Yuan, B., Wang, Y. & Ackermann, L. Ruthenium-catalyzed remote difunctionalization of nonactivated alkenes for double meta-C(sp2)–H/C–6(sp3)–H functionalization. Angew. Chem. Int. Ed. 62, e202301168 (2023).

    Article  CAS  Google Scholar 

  46. Ma, X., Zhang, Q. & Zhang, W. Remote radical 1,3-, 1,4-, 1,5-, 1,6- and 1,7-difunctionalization reactions. Molecules 28, 3027 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Shu, W., Merino, E. & Nevado, C. Visible light-mediated, redox-neutral remote 1,6-difunctionalizations of alkenes. ACS Catal. 8, 6401–6406 (2018).

    Article  CAS  Google Scholar 

  49. Qiu, J.-K. et al. Catalytic dual 1,1-H-abstraction/insertion for domino spirocyclizations. J. Am. Chem. Soc. 137, 8928–8931 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Yu, P. et al. Enantioselective C–H bond functionalization triggered by radical trifluoromethylation of unactivated alkene. Angew. Chem. Int. Ed. 53, 11890–11894 (2014).

    Article  CAS  Google Scholar 

  51. Huang, L., Zheng, S.-C., Tan, B. & Liu, X.-Y. Metal-free direct 1,6- and 1,2-difunctionalization triggered by radical trifluoromethylation of alkenes. Org. Lett. 17, 1589–1592 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, L., Lin, J.-S., Tan, B. & Liu, X.-Y. Alkene trifluoromethylation-initiated remote α-azidation of carbonyl compounds toward trifluoromethyl γ-lactam and spirobenzofuranone-lactam. ACS Catal. 5, 2826–2831 (2015).

    Article  CAS  Google Scholar 

  53. Wang, D. & Ackermann, L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem. Sci. 13, 7256–7263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, J. et al. Photoredox-enabled chromium-catalyzed alkene diacylations. ACS Catal. 12, 1879–1885 (2022).

    Article  CAS  Google Scholar 

  55. Jin, S. et al. N-Heterocyclic carbene-photocatalyzed tricomponent regioselective 1,2-diacylation of alkenes illuminates the mechanistic details of the electron donor–acceptor complex-mediated radical relay processes. ACS Catal. 12, 285–294 (2021).

    Article  Google Scholar 

  56. Cheng, Y. et al. Direct 1,2-dicarbonylation of alkenes towards 1,4-diketones via photocatalysis. Angew. Chem. Int. Ed. 60, 26822–26828 (2021).

    Article  CAS  Google Scholar 

  57. Lemmerer, M., Schupp, M., Kaiser, D. & Maulide, N. Synthetic approaches to 1,4-dicarbonyl compounds. Nat. Synth. 1, 923–935 (2022).

    Article  Google Scholar 

  58. DeMartino, M. P., Chen, K. & Baran, P. S. Intermolecular enolate heterocoupling: scope, mechanism, and application. J. Am. Chem. Soc. 130, 11546–11560 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Raviola, C., Protti, S., Ravelli, D. & Fagnon, M. Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chem. 21, 748–764 (2019).

    Article  CAS  Google Scholar 

  60. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  61. Decicco, C. P., Nelson, D. J., Corbett, R. L. & Dreabit, J. C. Asymmetric synthesis of 2,3-disubstituted succinates via chiral oxazolidinone controlled displacement of α-trifluoromethanesulfonate substituted esters. J. Org. Chem. 60, 4782–4785 (1995).

    Article  CAS  Google Scholar 

  62. Stetter, H. & Schreckenberg, M. A new method for addition of aldehydes to activated double bonds. Angew. Chem. Int. Ed. 12, 81–81 (1973).

    Article  Google Scholar 

  63. Banerjee, A., Lei, Z. & Ngai, M.-Y. Acyl radical chemistry via visible-light photoredox catalysis. Synthesis 51, 303–333 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Marzo, L., Ghosh, I., Esteban, F. & König, B. Metal-free photocatalyzed cross coupling of bromoheteroarenes with pyrroles. ACS Catal. 6, 6780–6784 (2016).

    Article  CAS  Google Scholar 

  65. Feng, Q. & Song, Q. Chemoselective copper-catalyzed acylation of benzothiazoles with aryl methyl ketones. Adv. Synth. Catal. 356, 2445–2452 (2014).

    Article  CAS  Google Scholar 

  66. Hoarau, C., Lassalas, P. & Marsais, F. DMAP-catalyzed Regel-type direct C-2 (hetero)aroylation of oxazoles and thiazoles derivatives with acid chlorides. Synlett 24, 2233–2240 (2013).

    Article  Google Scholar 

  67. Zhang, H. et al. Radical-mediated distal ipso-migration of O/S-containing heteroaryls and DFT studies for migratory aptitude. Org. Lett. 22, 5947–5952 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, S.-H., Tu, Y.-Q. & Wang, M. t-BuOK promoted coupling of alkynes and aldehydes: a concise synthetic method of β,γ-unsaturated enones. Tetrahedron Lett. 47, 8621–8623 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2023YFA1507500) and the Chinese Academy of Sciences Dalian Institute of Chemical Physics (DICP) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed and carried out most of the reactions and analysed the data. Y.W., H.Y., Y. Zheng and Z.-P.B. provided raw material support. M.H., J.Z. and Y. Zhao performed DFT calculations. X.-F.W designed and supervised the project. X.-F.W and Y.W. wrote and revised the paper.

Corresponding author

Correspondence to Xiao-Feng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figures 1–366, Tables 1 and 2, and References.

Supplementary Data 1

Crystallographic data of 6b.

Supplementary Data 2

DFT caculated energy profile.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, H., Zheng, Y. et al. Carbon monoxide enabling synergistic carbonylation and (hetero)aryl migration. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01204-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing