Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor

Abstract

While electrochemical nitrate reduction to ammonia represents a promising route for water treatment and ammonia generation, one critical challenge in the field is the need for high-concentration supporting electrolytes in this electrochemical system. Here we report a three-chamber porous solid electrolyte reactor design coupled with cation shielding effects for efficient nitrate reduction reaction without supporting electrolytes. By feeding treated water from the cathode chamber to the middle porous solid electrolyte layer, we can realize an alkali metal cation shuttling loop from the middle layer back into the cathode chamber to boost the nitrate reduction selectivity and suppress the hydrogen evolution side reaction. This reactor system can deliver high ammonia Faradaic efficiencies (>90%) at practical current densities (>100 mA cm−2) under a typical wastewater nitrate concentration of 2,000 ppm, enabling a high-purity water effluent and NH3(g) as products with no need for electrolyte recovery processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recycling NH3.
Fig. 2: Reactor design for improved NO3RR performance.
Fig. 3: Process design for NO3 conversion and its NO3RR performance.
Fig. 4: Long-term stability test for direct NO3 conversion.
Fig. 5: TEA of NO3 conversion using a PSE reactor.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the main text, Supplementary Information, and Source data provided with this paper. Additional data related to this study may be requested from the corresponding author. Source data are provided with this paper.

References

  1. Christensen, C. H., Johannessen, T., Sørensen, R. Z. & Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 111, 140–144 (2006).

    Article  CAS  Google Scholar 

  2. Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Jeerh, G., Zhang, M. & Tao, S. Recent progress in ammonia fuel cells and their potential applications. J. Mater. Chem. A 9, 727–752 (2021).

    Article  CAS  Google Scholar 

  4. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chatterjee, S., Parsapur, R. K. & Huang, K.-W. Limitations of ammonia as a hydrogen energy carrier for the transportation sector. ACS Energy Lett. 6, 4390–4394 (2021).

    Article  CAS  Google Scholar 

  6. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E. & Stoukides, M. An electrochemical Haber–Bosch process. Joule 4, 142–158 (2020).

    Article  CAS  Google Scholar 

  9. Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 345, 610 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article  Google Scholar 

  11. Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. & Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017).

    Article  CAS  Google Scholar 

  12. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  13. Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, P. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl Acad. Sci. USA 116, 6635–6640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lv, C. et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. Engl. 57, 6073–6076 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Du, H.-L. et al. Electroreduction of nitrogen at almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  21. Duca, M. & Koper, M. T. M. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 5, 9726–9742 (2012).

    Article  CAS  Google Scholar 

  22. Wu, X. et al. Contrasting capability of single atom palladium for thermocatalytic versus electrocatalytic nitrate reduction reaction. ACS Catal. 13, 6804–6812 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, K.-H. et al. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy Environ. Sci. 16, 663–672 (2023).

    Article  CAS  Google Scholar 

  24. Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kani, N. C. et al. Solar-driven electrochemical synthesis of ammonia using nitrate with 11% solar-to-fuel efficiency at ambient conditions. Energy Environ. Sci. 14, 6349–6359 (2021).

    Article  CAS  Google Scholar 

  26. McEnaney, J. M. et al. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustain. Chem. Eng. 8, 2672–2681 (2020).

    Article  CAS  Google Scholar 

  27. Wang, X. et al. Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl Acad. Sci. USA 120, e2217703120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daiyan, R. et al. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 14, 3588–3598 (2021).

    Article  CAS  Google Scholar 

  29. Yang, X. et al. Achievements, challenges, and perspectives on nitrogen electrochemistry for carbon-neutral energy technologies. Angew. Chem. Int. Ed. 135, e202215938 (2022).

    Article  Google Scholar 

  30. Chen, Y. et al. Sustainable waste-nitrogen upcycling enabled by low-concentration nitrate electrodialysis and high-performance ammonia electrosynthesis. EES Catal. 1, 504–515 (2023).

    Article  CAS  Google Scholar 

  31. Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. & Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B 236, 546–568 (2018).

    Article  CAS  Google Scholar 

  32. Kim, K. et al. Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat. Commun. 14, 823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, J. et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ. Sci. 14, 865–872 (2021).

    Article  CAS  Google Scholar 

  34. Li, L. et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. 60, 14131–14137 (2021).

    Article  CAS  Google Scholar 

  35. Ren, Y. et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation–electroreduction system. J. Am. Chem. Soc. 144, 10193–10200 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Rogan, W. J., Brady, M. T. & the Committee on Environmental Health; Committee on Infectious Diseases Drinking water from private wells and risks to children. Pediatrics 123, e1123–e1137 (2009).

    Article  PubMed  Google Scholar 

  37. Katsounaros, I., Dortsiou, M. & Kyriacou, G. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes. J. Hazard. Mater. 171, 323–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Su, L. et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 120, 1–11 (2017).

    Article  PubMed  Google Scholar 

  39. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Hao, R. et al. Pollution to solution: a universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catal. 2, 622–638 (2022).

    Article  CAS  Google Scholar 

  42. Gao, Q. et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nature Synthesis 2, 1–11 (2023).

    CAS  Google Scholar 

  43. Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    Article  CAS  Google Scholar 

  44. Mi, L. et al. Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a ‘two-in-one’ flow cell electrolyzer. Adv. Energy Mater. 12, 2202247 (2022).

    Article  CAS  Google Scholar 

  45. Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Article  CAS  Google Scholar 

  46. Zhang, S. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 14, 3634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Jeon, T. H. et al. Cobalt–copper nanoparticles on three-dimensional substrate for efficient ammonia synthesis via electrocatalytic nitrate reduction. J. Phys. Chem. C 126, 6982–6989 (2022).

    Article  CAS  Google Scholar 

  49. King, L. A. et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Knöppel, J. et al. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat. Commun. 12, 2231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen, F.-Y., Wu, Z.-Y., Adler, Z. & Wang, H. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021).

    Article  CAS  Google Scholar 

  52. Fernández-Nava, Y., Marañón, E., Soons, J. & Castrillón, L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 99, 7976–7981 (2008).

    Article  PubMed  Google Scholar 

  53. Chauhan, R. & Srivastava, V. C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode. Chem. Eng. J. 386, 122065 (2020).

    Article  CAS  Google Scholar 

  54. Bunea, S., Clemens, K. & Urakawa, A. Electrified conversion of contaminated water to value: selective conversion of aqueous nitrate to ammonia in a polymer electrolyte membrane cell. ChemSusChem 15, e202102180 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Li, S. et al. Proton exchange membrane electrode assembly for ammonia electrosynthesis from nitrate. ACS Appl. Energy Mater. 6, 5067–5073 (2023).

    Article  CAS  Google Scholar 

  56. Xu, Z. et al. Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1,000 mA cm−2. Nat. Commun. 14, 1619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, P. et al. Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature 618, 959–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  59. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  61. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  62. Pan, B., Wang, Y. & Li, Y. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2, 1267–1276 (2022).

    Article  CAS  Google Scholar 

  63. Zhang, X. et al. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 13, 2880 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, J.-C., Shang, C. in Advanced Physicochemical Treatment Processes (eds Wang L. K., Hung Y.-T. & Shammas N. K.) (Humana Press, 2006).

  65. Zangeneh, A., Sabzalipour, S., Takdatsan, A., Yengejeh, R. J. & Khafaie, M. A. Ammonia removal form municipal wastewater by air stripping process: an experimental study. S. Afr. J. Chem. Eng. 36, 134–141 (2021).

    Google Scholar 

  66. Yuan, M.-H., Chen, Y.-H., Tsai, J.-Y. & Chang, C.-Y. Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed. Process Saf. Environ. Prot. 102, 777–785 (2016).

    Article  CAS  Google Scholar 

  67. Liu, H. et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 11, 8431–8442 (2021).

    Article  CAS  Google Scholar 

  68. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  69. Speck, F. D. & Cherevko, S. Electrochemical copper dissolution: a benchmark for stable CO2 reduction on copper electrocatalysts. Electrochem. Commun. 115, 106739 (2020).

    Article  CAS  Google Scholar 

  70. Fitzgerald, D. J. Safety guidelines for copper in water. Am. J. Clin. Nutr. 67, 1098S–1102S (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, Y. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 14, 2475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, L. et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 13, 3439–3446 (2020).

    Article  CAS  Google Scholar 

  73. Moloantoa, K. M., Khetsha, Z. P., van Heerden, E., Castillo, J. C. & Cason, E. D. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water 14, 799 (2022).

    Article  CAS  Google Scholar 

  74. Schnitkey, G., Paulson, N., Zulauf, C. & Baltz, J. Fertilizer prices and company profits going into spring 2023. Farmdoc Daily https://farmdocdaily.illinois.edu/2023/02/fertilizer-prices-and-company-profits-going-into-spring-2023.html (2023).

  75. US EPA. A compilation of cost data associated with the impacts and control of nutrient pollution. https://www.epa.gov/sites/default/files/2015-04/documents/nutrient-economics-report-2015.pdf (2015).

  76. Khera, R., Ransom, P., Guttridge, M. & Speth, T. F. Estimating costs for nitrate and perchlorate treatment for small drinking water systems. AWWA Water Sci. 3, e1224 (2021).

    Article  CAS  Google Scholar 

  77. Simondson, D. et al. Mixed silver–bismuth oxides: a robust oxygen evolution catalyst operating at low pH and elevated temperatures. ACS Catal. 12, 12912–12926 (2022).

    Article  CAS  Google Scholar 

  78. Samaroo, S. & Hickey, D. P. Electrochemical ammonia production from nitrates in agricultural tile drainage: technoeconomic and global warming analysis. AIChE J. 69, e17969 (2023).

    Article  CAS  Google Scholar 

  79. Zhu, D., Zhang, L., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci. Rev. 6, 730–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT EEC 1449500). The authors acknowledge the use of the Shared Equipment Authority and Electron Microscopy Center at Rice University for their contributions to this research. F.-Y.C. gratefully acknowledges the support from the Riki Kobayashi Fellowship Award from the Department of Chemical and Biomolecular Engineering at Rice University.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceptualized by F.-Y.C. and H.W., with H.W. providing project supervision. Catalyst synthesis was performed by F.-Y.C. and S.P. F.-Y.C. and C.Q. carried out the catalyst characterization. The reactor system was designed by F.-Y.C. and H.W. Electrochemical tests and data processing were conducted by F.-Y.C., A.E., S.P., Y.F., S.A., S.H., Z.Y. and C.S. TEA was done by F.-Y.C. and P.Z. The manuscript was co-written by F.-Y.C. and H.W. All authors participated in result discussions and provided comments on the manuscript.

Corresponding author

Correspondence to Haotian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Mahinder Ramdin, David Hickey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1 and 2 and Notes 1 and 2.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FY., Elgazzar, A., Pecaut, S. et al. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01200-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01200-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing