Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization

Abstract

A bias-free photochemical diode, in which a p-type photocathode is connected to an n-type photoanode to harness light for driving photoelectrochemical reduction and oxidation pairs, serves as a platform for realizing light-driven fuel generation from CO2. However, the conventional design, in which cathodic CO2 reduction is coupled with the anodic oxygen evolution reaction (OER), requires substantial energy input. Here we present a photochemical diode device that harnesses red light (740 nm) to simultaneously drive biophotocathodic CO2-to-multicarbon conversion and photoanodic glycerol oxidation as an alternative to the OER to overcome the above thermodynamic limitation. The device consists of an efficient CO2-fixing microorganism, Sporomusa ovata, interfaced with a silicon nanowire photocathode and a Pt–Au-loaded silicon nanowire photoanode. This photochemical diode operates bias-free under low-intensity (20 mW cm2) red light irradiation with ~80% Faradaic efficiency for both the cathodic and anodic products. This work provides an alternative photosynthetic route to mitigate excessive CO2 emissions and efficiently generate value-added chemicals from CO2 and glycerol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of SiNW biophotochemical diodes for simultaneous CO2RR and GOR.
Fig. 2: Photoelectrochemistry of abiotic SiNW photocathodes in neutral pH buffer.
Fig. 3: SiNW biophotocathodes for the CO2RR and SiNW photoanodes for the GOR.
Fig. 4: PEC performance of the biophotochemical diode in a two-electrode configuration.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

    PubMed  Google Scholar 

  2. Yin, J., Molini, A. & Porporato, A. Impacts of solar intermittency on future photovoltaic reliability. Nat. Commun. 11, 1478 (2020).

    Google Scholar 

  3. Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem. Int. Ed. 54, 3259–3266 (2015).

    CAS  Google Scholar 

  4. Deng, J. et al. Nanowire photoelectrochemistry. Chem. Rev. 119, 9221–9259 (2019).

    CAS  PubMed  Google Scholar 

  5. Kim, J. et al. Robust FeOOH/BiVO4/Cu(In,Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction. J. Mater. Chem. A 8, 8496–8502 (2020).

    CAS  Google Scholar 

  6. Kuk, S. K. et al. CO2-reductive, copper oxide-based photobiocathode for Z-scheme semi-artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).

    CAS  PubMed  Google Scholar 

  7. Nozik, A. J. Photochemical diodes. Appl. Phys. Lett. 30, 567–569 (1977).

    CAS  Google Scholar 

  8. Andrei, V., Roh, I. & Yang, P. Nanowire photochemical diodes for artificial photosynthesis. Sci. Adv. 9, eade9044 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sivula, K. & Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    CAS  Google Scholar 

  10. Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    CAS  PubMed  Google Scholar 

  11. Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).

    CAS  Google Scholar 

  12. Kim, H., Bae, S., Jeon, D. & Ryu, J. Fully solution-processable Cu2O–BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem. 20, 3732–3742 (2018).

    CAS  Google Scholar 

  13. Li, C. et al. Photoelectrochemical CO2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO2/Au photocathodes with low onset potentials. Energy Environ. Sci. 12, 923–928 (2019).

    CAS  Google Scholar 

  14. Gurudayal et al. Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ. Sci. 12, 1068–1077 (2019).

    CAS  Google Scholar 

  15. Rahaman, M. et al. Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf. Nat. Energy 8, 629–638 (2023).

    CAS  Google Scholar 

  16. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1, e00103–e00110 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cestellos-Blanco, S. et al. Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 12, 700010 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Cestellos-Blanc, S. et al. Photosynthetic biohybrid coculture for tandem and tunable CO2 and N2 fixation. Proc. Natl Acad. Sci. USA 119, e2122364119 (2022).

    Google Scholar 

  20. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    CAS  Google Scholar 

  21. Lin, J. A., Roh, I. & Yang, P. Photochemical diodes for simultaneous bias-free glycerol valorization and hydrogen evolution. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c01982 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tremblay, P. L., Höglund, D., Koza, A., Bonde, I. & Zhang, T. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci. Rep. 5, 16168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J., Cestellos-Blanco, S., Shen, Y., Cai, R. & Yang, P. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts. Nano Lett. https://doi.org/10.1021/acs.nanolett.2c01576 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang, F., Hanna, M. A. & Sun, R. Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    CAS  PubMed  Google Scholar 

  26. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brito-Santos, G. et al. Degradation analysis of highly UV-resistant down-shifting layers for silicon-based PV module applications. Mater. Sci. Eng. B 288, 116207 (2023).

    CAS  Google Scholar 

  28. Wang, Y. et al. Antimicrobial blue light inactivation of Gram-negative pathogens in biofilms: in vitro and in vivo studies. J. Infect. Dis. 213, 1380–1387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg. Med. 42, 467–472 (2010).

    PubMed  Google Scholar 

  30. Su, Y. et al. Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11, 609–612 (2016).

    CAS  PubMed  Google Scholar 

  31. Liu, C. et al. Nanowire−bacteria hybrids for unassisted solar carbon dioxide fixation. Nano Lett. 15, 3634–3639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    CAS  PubMed  Google Scholar 

  33. Lineberry, E. et al. High-photovoltage silicon nanowire for biological cofactor production. https://doi.org/10.1021/jacs.3c06243 (2023).

  34. Gebresemati, M., Das, G., Park, B. J. & Yoon, H. H. Electricity production from macroalgae by a microbial fuel cell using nickel nanoparticles as cathode catalysts. Int. J. Hydrogen Energy 42, 29874–29880 (2017).

    CAS  Google Scholar 

  35. Hernández, L. A., Riveros, G., González, D. M., Gacitua, M. & del Valle, M. A. PEDOT/graphene/nickel-nanoparticles composites as electrodes for microbial fuel cells. J. Mater. Sci. Mater. Electron. 30, 12001–12011 (2019).

    Google Scholar 

  36. Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barolet, D., Christiaens, F. & Hamblin, M. R. Infrared and skin: friend or foe. J. Photochem. Photobiol. B 155, 78–85 (2016).

    CAS  PubMed  Google Scholar 

  38. Su, Y. et al. Close-packed nanowire–bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).

    CAS  Google Scholar 

  39. Moore, E. E. et al. Understanding the local chemical environment of bioelectrocatalysis. Proc. Natl Acad. Sci. USA 119, e2114097119 (2022).

    Google Scholar 

  40. Möller, B., Oßmer, R., Howard, B. H., Gottschalk, G. & Hippe, H. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139, 388–396 (1984).

    Google Scholar 

  41. Salimijazi, F., Kim, J., Schmitz, A., Grenville, R. & Barstow, B. Constraints on the efficiency of electromicrobial production. Joule https://doi.org/10.1016/j.joule.2020.08.010 (2020).

  42. Jourdin, L. & Burdyny, T. Microbial electrosynthesis: where do we go from here? Trends Biotechnol. 39, 359–369 (2021).

    CAS  PubMed  Google Scholar 

  43. Prévoteau, A., Carvajal-Arroyo, J. M., Ganigué, R. & Rabaey, K. Microbial electrosynthesis from CO2: forever a promise? Curr. Opin. Biotechnol. 62, 48–57 (2020).

    PubMed  Google Scholar 

  44. Mccuskey, S. R., Su, Y., Leifert, D., Moreland, A. S. & Bazan, G. C. Living bioelectrochemical composites. Adv. Mater. 32, 1908178 (2020).

    CAS  Google Scholar 

  45. Qian, J. et al. Barcoded microbial system for high-resolution object provenance. Science 368, 1135–1140 (2020).

    CAS  PubMed  Google Scholar 

  46. Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).

    CAS  PubMed  Google Scholar 

  47. Li, J. et al. Tuning the product selectivity toward the high yield of glyceric acid in Pt−CeO2/CNT electrocatalyzed oxidation of glycerol. ChemCatChem 14, e202200509 (2022).

    CAS  Google Scholar 

  48. Luo, J. et al. Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016).

    Google Scholar 

  49. Kong, Q. et al. Directed assembly of nanoparticle catalysts on nanowire photoelectrodes for photoelectrochemical CO2 reduction. Nano Lett. 16, 5675–5680 (2016).

    CAS  PubMed  Google Scholar 

  50. Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).

    CAS  PubMed  Google Scholar 

  51. Yu, Y. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Marvell Nanofabrication Laboratory at UC Berkeley for use of their facilities. We thank H. Celik and UC Berkeley’s NMR facility in the College of Chemistry (CoC-NMR) for spectroscopic assistance. This work was supported by the National Science Foundation (grant no. DMR-221716). Jimin Kim acknowledges the Kwanjeong Educational Foundation for a fellowship. J.-A.L. thanks the Taiwan Ministry of Education and Liquid Sunlight Alliance, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub, for financial support (award no. DE-SC0021266). The instruments in CoC-NMR are supported in part by the National Institutes of Health (grant no. S10OD024998).

Author information

Authors and Affiliations

Authors

Contributions

Jimin Kim and P.Y. designed the experiments. J.-A.L. and I.R. fabricated the silicon nanowire electrodes. Jimin Kim and Jinhyun Kim cultured and incubated the bacteria. Jimin Kim, Jinhyun Kim and J.-A.L. performed the electrochemical and light-driven experiments. Jimin Kim, J.-A.L. and P.Y. co-wrote the paper. All of the authors discussed the results and revised the paper.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jingjing Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–14 and Discussions 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lin, JA., Kim, J. et al. A red-light-powered silicon nanowire biophotochemical diode for simultaneous CO2 reduction and glycerol valorization. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01198-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing