Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis

Abstract

Catalytic site-selective functionalization of distal C–H bonds represents a formidable challenge in organic synthesis. Particularly, the precise functionalization of distal aromatic C(sp2)–H bonds remains largely unexplored. Here we present a highly para-selective acylation strategy to target ultraremote aryl C(sp2)–H bonds, eight chemical bonds away from an activated functionality, through radical N-heterocyclic carbene organocatalysis. This method is developed on the basis of a unique single-electron pathway involving the site-selective activation of aryl C–H bonds by a nitrogen-centred radical generated in situ. Importantly, this organocatalytic approach shows potential for the functionalization of drugs, amino acids and peptides, thus highlighting its importance for medicinal chemistry. Our investigation encompassed meticulous mechanistic studies, including control experiments and density functional theory calculations, to unravel the intricacies behind the observed site selectivity and shed light on the mechanism of radical N-heterocyclic carbene organocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and discovery of N-radical-directed remote arene C–H functionalization.
Fig. 2: Reaction condition assessment.
Fig. 3: Aldehyde scope of the organocatalytic remote acylation.
Fig. 4: Amide scope of the organocatalytic remote acylation.
Fig. 5: Late-stage functionalization of drugs and biologically active molecules.
Fig. 6: Site-selective functionalization of amino acid derivatives and peptides.
Fig. 7: Further experimental studies.
Fig. 8: DFT calculations.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2245194 (3a), 2355142 (3bu) and 2245196 (3ch). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Data are available from the corresponding authors upon request.

References

  1. Lam, N. Y. S., Wu, K. & Yu, J.-Q. Advancing the logic of chemical synthesis: C–H activation as strategic and tactical disconnections for C–C bond construction. Angew. Chem. Int. Ed. 60, 15767–15790 (2021).

    CAS  Google Scholar 

  2. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy, S., Panja, S., Sahoo, S. R., Chatterjee, S. & Maiti, D. Enroute sustainability: metal free C–H bond functionalisation. Chem. Soc. Rev. 52, 2391–2479 (2023).

    CAS  PubMed  Google Scholar 

  5. Rogge, T. et al. C–H activation. Nat. Rev. Methods Prim. 1, 43 (2021).

    CAS  Google Scholar 

  6. Maiti, D. Handbook of CH-Functionalization (Wiley, 2022).

  7. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    CAS  PubMed  Google Scholar 

  9. Lucas, E. L. et al. Palladium-catalyzed enantioselective β-C(sp3)–H activation reactions of aliphatic acids: a retrosynthetic surrogate for enolate alkylation and conjugate addition. Acc. Chem. Res. 55, 537–550 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sinha, S. K. et al. Toolbox for distal C–H bond functionalizations in organic molecules. Chem. Rev. 122, 5682–5841 (2022).

    CAS  PubMed  Google Scholar 

  11. Maiti, D. & Guin, S. Remote C–H Bond Functionalizations: Methods and Strategies in Organic Synthesis. (Wiley, 2021).

  12. Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lam, N. Y. S. et al. Empirical guidelines for the development of remote directing templates through quantitative and experimental analyses. J. Am. Chem. Soc. 144, 2793–2803 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, J.-J. et al. Atroposelective remote meta-C–H activation. Chem 9, 1452–1463 (2023).

    CAS  Google Scholar 

  15. Leitch, J. A. & Frost, C. G. Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation. Chem. Soc. Rev. 46, 7145–7153 (2017).

    CAS  PubMed  Google Scholar 

  16. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    CAS  PubMed  Google Scholar 

  17. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nobile, E., Castanheiro, T. & Besset, T. Radical-promoted distal C–H functionalization of C(sp3) centers with fluorinated moieties. Angew. Chem. Int. Ed. 60, 12170–12191 (2021).

    CAS  Google Scholar 

  19. Nechab, M., Mondal, S. & Bertrand, M. P. 1,n-Hydrogen-atom transfer (HAT) reactions in which n ≠ 5: an updated inventory. Chem. Eur. J. 20, 16034–16059 (2014).

    CAS  PubMed  Google Scholar 

  20. Guo, W., Wang, Q. & Zhu, J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem. Soc. Rev. 50, 7359–7377 (2021).

    CAS  PubMed  Google Scholar 

  21. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 539, 272–275 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    CAS  Google Scholar 

  24. Allen, A. R., Noten, E. A. & Stephenson, C. R. J. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 122, 2695–2751 (2022).

    CAS  PubMed  Google Scholar 

  25. Li, W., Xu, W., Xie, J., Yu, S. & Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).

    CAS  PubMed  Google Scholar 

  26. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    CAS  Google Scholar 

  27. Smith B. M. & March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley-Interscience, 2007).

  28. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014).

    CAS  PubMed  Google Scholar 

  33. Li, M. et al. Remote para-C–H acetoxylation of electron-deficient arenes. Org. Lett. 21, 540–544 (2019).

    CAS  PubMed  Google Scholar 

  34. Chang, W. et al. Computationally designed ligands enable tunable borylation of remote C–H bonds in arenes. Chem 8, 1775–1788 (2022).

    CAS  Google Scholar 

  35. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    CAS  PubMed  Google Scholar 

  36. Liu, K., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).

    CAS  Google Scholar 

  37. Dai, L. & Ye, S. Recent advances in N-heterocyclic carbene-catalyzed radical reactions. Chin. Chem. Lett. 32, 660–667 (2021).

    CAS  Google Scholar 

  38. Ishii, T., Nagao, K. & Ohmiya, H. Recent advances in N-heterocyclic carbene-based radical catalysis. Chem. Sci. 11, 5630–5636 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, Q.-Z., Zeng, R., Han, B. & Li, J.-L. Single-electron transfer reactions enabled by N-heterocyclic carbene organocatalysis. Chem. Eur. J. 27, 3238–3250 (2021).

    CAS  PubMed  Google Scholar 

  40. Song, R. & Chi, Y. R. N-heterocyclic carbene catalyzed radical coupling of aldehydes with redox-active esters. Angew. Chem. Int. Ed. 58, 8628–8630 (2019).

    CAS  Google Scholar 

  41. Ishii, T., Kakeno, Y., Nagao, K. & Ohmiya, H. N-heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).

    CAS  PubMed  Google Scholar 

  42. Ishii, T., Ota, K., Nagao, K. & Ohmiya, H. N-heterocyclic carbene-catalyzed radical relay enabling vicinal alkylacylation of alkenes. J. Am. Chem. Soc. 141, 14073–14077 (2019).

    CAS  PubMed  Google Scholar 

  43. Meng, Q.-Y., Lezius, L. & Studer, A. Benzylic C–H acylation by cooperative NHC and photoredox catalysis. Nat. Commun. 12, 2068 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuki, Y. et al. Aryl radical-mediated N-heterocyclic carbene catalysis. Nat. Commun. 12, 3848 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bay, A. V., Fitzpatrick, K. P., Betori, R. C. & Scheidt, K. A. Combined photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143–9148 (2020).

    CAS  Google Scholar 

  46. Li, J. L. et al. Radical acylfluoroalkylation of olefins through N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 59, 1863–1870 (2020).

    CAS  Google Scholar 

  47. Goto, Y., Sano, M., Sumida, Y. & Ohmiya, H. N-heterocyclic carbene- and organic photoredox-catalysed meta-selective acylation of electron-rich arenes. Nat. Synth. 2, 1037–1045 (2023).

    Google Scholar 

  48. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    CAS  Google Scholar 

  49. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    CAS  PubMed  Google Scholar 

  50. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Google Scholar 

  51. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).

    CAS  Google Scholar 

  52. Yuan, Z., Zhu, C., Zhang, Y. & Rao, Y. Post-modification of amino acids and peptides for the rapid synthesis of C-glycoamino acids and C-glycopeptides. Eur. J. Org. Chem. 2022, e202201036 (2022).

    CAS  Google Scholar 

  53. Zard, S. Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 37, 1603–1618 (2008).

    CAS  PubMed  Google Scholar 

  54. Jiang, H. & Studer, A. Intermolecular radical carboamination of alkenes. Chem. Soc. Rev. 49, 1790–1811 (2020).

    CAS  PubMed  Google Scholar 

  55. Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546–1556 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, H. & Studer, A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. CCS Chem. 1, 38–49 (2019).

    CAS  Google Scholar 

  57. Pratley, C., Fenner, S. & Murphy, J. A. Nitrogen-centered radicals in functionalization of sp2 systems: generation, reactivity, and applications in synthesis. Chem. Rev. 122, 8181–8260 (2022).

    CAS  PubMed  Google Scholar 

  58. Zhang, Y. et al. N-heterocyclic carbene-catalyzed radical reactions for highly enantioselective β-hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).

    CAS  PubMed  Google Scholar 

  59. Li, Q.-Z. et al. Remote C(sp3)–H acylation of amides and cascade cyclization via N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 61, e202116629 (2022).

    CAS  Google Scholar 

  60. Zhang, X.-M., Tu, Y.-Q., Zhang, F.-M., Chen, Z.-H. & Wang, S.-H. Recent applications of the 1,2-carbon atom migration strategy in complex natural product total synthesis. Chem. Soc. Rev. 46, 2272–2305 (2017).

    CAS  PubMed  Google Scholar 

  61. Regnier, V. et al. What are the radical intermediates in oxidative N-heterocyclic carbene organocatalysis? J. Am. Chem. Soc. 141, 1109–1117 (2019).

    CAS  PubMed  Google Scholar 

  62. Bay, A. V. et al. Light-driven carbene catalysis for the synthesis of aliphatic and α-amino ketones. Angew. Chem. Int. Ed. 60, 17925–17931 (2021).

    CAS  Google Scholar 

  63. Li, Q.-Z. et al. Oxidative radical NHC catalysis: divergent difunctionalization of olefins through intermolecular hydrogen atom transfer. Angew. Chem. Int. Ed. 61, e202207824 (2022).

    CAS  Google Scholar 

  64. Ess, D. H. & Houk, K. N. Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J. Am. Chem. Soc. 129, 10646–10647 (2007).

    CAS  PubMed  Google Scholar 

  65. Hayden, A. E. & Houk, K. N. Transition state distortion energies correlate with activation energies of 1,4-dihydrogenations and Diels–Alder cycloadditions of aromatic molecules. J. Am. Chem. Soc. 131, 4084–4089 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the NSFC (no. 22271028 to J.-L.L., 22071011 to Q.-Z.L. and 22203010 to Z.-Y.Y.), the Science & Technology Department of Sichuan Province (no. 2023NSFSC2001 to J.-L.L.) and Longquan Talents Program, Key-Area Research and Development Program of Guangdong Province (no. 2022B1111050003 to J.-L.L.). We express our profound gratitude for the insightful discussions with Y. Lan and X.-T. Qi regarding the DFT calculations in this study.

Author information

Authors and Affiliations

Authors

Contributions

J.-L.L. supervised this study. Q.-Z.L. and W.-L.Z. conducted the main experiments and prepared the supplementary information of the experimental section. X.-X.K. and Y.-Q.L. prepared some substrates and performed the synthetic and mechanistic experiments. Y.H. and X.Z. helped with characterizing some compounds. Z.-Y.Y. performed the DFT calculations. Z.-Y.Y. and X.Z. prepared the supplementary information of the calculation section. J.-L.L. and Q.-Z.L. designed the project and wrote the manuscript. Q.-Z.L. and W.-L.Z. contributed equally to this work.

Corresponding author

Correspondence to Jun-Long Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jan Philipp Götze, Liliana Dobrzańska, Xiangyang Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, note and references.

Supplementary Data 1

The atomic coordinates of the optimized computational models studied in this paper.

Supplementary Data 2

CIF file of 3a.

Supplementary Data 3

CIF file of 3bu.

Supplementary Data 4

CIF file of 3ch.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QZ., Zou, WL., Yu, ZY. et al. Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis. Nat Catal 7, 900–911 (2024). https://doi.org/10.1038/s41929-024-01194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01194-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing