Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction

Abstract

Heterogenized molecular electrocatalysts are a promising group of materials that can electrocatalytically convert waste molecules into higher-value products. However, how the dispersion state of molecules affects the catalytic process is not well understood. Using cobalt phthalocyanine (CoPc) dispersed on carbon nanotubes (CNTs) as a model system, here we show that increasing the direct interaction of the molecular catalyst with cations notably enhances the CO2 reduction reaction. Specifically, molecularly dispersed CoPc on CNTs yields an eightfold increase in methanol selectivity compared with aggregated CoPc on CNTs. In situ spectroscopic studies confirm the presence of two intermediates located at different positions of the double layer. Density functional theory calculations further reveal that CoPc molecules inside the Stern layer are active for methanol production due to the direct interaction with cations. Similar enhancement effects are also observed for other reactions, showing that dispersing molecular catalysts into monomeric states is a general design parameter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrocatalytic performance of differently dispersed CoPc electrodes.
Fig. 2: AFM-IR measurement of differently dispersed CoPc electrodes.
Fig. 3: SFG measurement of differently dispersed CoPc electrodes.
Fig. 4: Schematics of interfacial structures.
Fig. 5: DFT calculations of the cation coordination effect.
Fig. 6: SFG spectra, kinetics results and interfacial structures from the cation-dependent study.

Similar content being viewed by others

Data availability

All of the experimental data supporting the findings of this study are available within the supplementary materials. Source data are provided with this paper.

References

  1. Corbin, N., Zeng, J., Williams, K. & Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019).

    Article  CAS  Google Scholar 

  2. Wu, Y., Liang, Y. & Wang, H. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 54, 3149–3159 (2021).

    Article  CAS  Google Scholar 

  3. Wu, X. et al. Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO2 reduction in a membrane flow cell. Adv. Funct. Mater. 32, 2107301 (2022).

    Article  CAS  Google Scholar 

  4. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  6. Sun, C. et al. Three-dimensional graphene-supported cobalt phthalocyanine as advanced electrocatalysts for oxygen reduction reaction. J. Electrochem. Soc. 165, F24 (2018).

    Article  CAS  Google Scholar 

  7. Chen, R., Li, H., Chu, D. & Wang, G. Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113, 20689–20697 (2009).

    Article  CAS  Google Scholar 

  8. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  9. Chebotareva, N. & Nyokong, T. Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media. J. Appl. Electrochem. 27, 975–981 (1997).

    Article  CAS  Google Scholar 

  10. Lieber, C. M. & Lewis, N. S. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106, 5033–5034 (1984).

    Article  CAS  Google Scholar 

  11. Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu, X. et al. High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett. 3, 2527–2532 (2018).

    Article  CAS  Google Scholar 

  13. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Li, N., Lu, W., Pei, K. & Chen, W. Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes. RSC Adv. 5, 9374–9380 (2015).

    Article  CAS  Google Scholar 

  15. Swarbrick, J. C., Weng, T.-C., Schulte, K., Khlobystov, A. N. & Glatzel, P. Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering. Phys. Chem. Chem. Phys. 12, 9693–9699 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Su, J. et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023).

    Article  CAS  Google Scholar 

  17. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article  CAS  Google Scholar 

  18. Li, H. et al. Stimulating the pre-catalyst redox reaction and the proton–electron transfer process of cobalt phthalocyanine for CO2 electroreduction. J. Phys. Chem. C 126, 9665–9672 (2022).

    Article  CAS  Google Scholar 

  19. Zhang, Z. et al. Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018).

    Article  CAS  Google Scholar 

  20. Chang, Q. et al. Metal-coordinated phthalocyanines as platform molecules for understanding isolated metal sites in the electrochemical reduction of CO2. J. Am. Chem. Soc. 144, 16131–16138 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Zeng, J. S., Corbin, N., Williams, K. & Manthiram, K. Kinetic analysis on the role of bicarbonate in carbon dioxide electroreduction at immobilized cobalt phthalocyanine. ACS Catal. 10, 4326–4336 (2020).

    Article  CAS  Google Scholar 

  22. Wang, X. et al. In situ scanning tunneling microscopy of cobalt-phthalocyanine-catalyzed CO2 reduction reaction. Angew. Chem. Int. Ed. 59, 16098–16103 (2020).

    Article  CAS  Google Scholar 

  23. Xia, Y. et al. Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 67, 104163 (2020).

    Article  CAS  Google Scholar 

  24. Zhu, M., Ye, R., Jin, K., Lazouski, N. & Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018).

    Article  CAS  Google Scholar 

  25. Chen, X., Wei, D. & Ahlquist, M. S. Aggregation and significant difference in reactivity therein: blocking the CO2-to-CH3OH reaction. Organometallics 40, 3087–3093 (2021).

    Article  CAS  Google Scholar 

  26. Shi, L.-L., Li, M., You, B. & Liao, R.-Z. Theoretical study on the electro-reduction of carbon dioxide to methanol catalyzed by cobalt phthalocyanine. Inorg. Chem. 61, 16549–16564 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Ren, X. et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dery, S., Friedman, B., Shema, H. & Gross, E. Mechanistic insights gained by high spatial resolution reactivity mapping of homogeneous and heterogeneous (electro) catalysts. Chem. Rev. 123, 6003–6038 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 12, 2200–2210 (2019).

    Article  Google Scholar 

  30. Hermansson, K. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106, 4695–4702 (2002).

    Article  CAS  Google Scholar 

  31. Tamami, M., Zhang, K., Dixit, N., Moore, R. B. & Long, T. E. Association of nucleobase-containing ammonium ionenes. Macromol. Chem. Phys. 215, 2337–2344 (2014).

    Article  CAS  Google Scholar 

  32. Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Direct observation of carbon dioxide electroreduction on gold: site blocking by the stern layer controls CO2 adsorption kinetics. J. Phys. Chem. Lett. 11, 8307–8313 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Q., Wallentine, S. K., Deng, G.-H., Rebstock, J. A. & Baker, L. R. The solvation-induced onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au 2, 472–482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Plasmon-resonant vibrational sum frequency generation of electrochemical interfaces: direct observation of carbon dioxide electroreduction on gold. J. Phys. Chem. A 124, 8057–8064 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Huo, S.-J., Wang, J.-Y., Sun, D.-L. & Cai, W.-B. Attenuated total reflection surface-enhanced infrared absorption spectroscopy at a cobalt electrode. Appl. Spectrosc. 63, 1162–1167 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Bradshaw, A. M. & Pritchard, J. Infrared spectra of carbon monoxide chemisorbed on metal films: a comparative study of copper, silver, gold, iron, cobalt and nickel. Proc. R. Soc. Lond. Ser. A 316, 169–183 (1970).

    Article  CAS  Google Scholar 

  37. Bhattacharyya, D. et al. Sub-nanometer mapping of the interfacial electric field profile using a vibrational Stark shift ruler. J. Am. Chem. Soc. 144, 14330–14338 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Kutzler, F. W., Barger, W. R., Snow, A. W. & Wohltjen, H. An investigation of conductivity in metal-substituted phthalocyanine Langmuir–Blodgett films. Thin Solid Films 155, 1–16 (1987).

    Article  CAS  Google Scholar 

  39. Shihub, S. & Gould, R. Frequency dependence of electronic conduction parameters in evaporated thin films of cobalt phthalocyanine. Thin Solid Films 254, 187–193 (1995).

    Article  CAS  Google Scholar 

  40. Ren, S. et al. Catalyst aggregation matters for immobilized molecular CO2RR electrocatalysts. J. Am. Chem. Soc. 145, 4414–4420 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y.-Q. et al. Probing the synergistic effects of Mg2+ on CO2 reduction reaction on CoPc by in situ electrochemical scanning tunneling microscopy. J. Am. Chem. Soc. 144, 20126–20133 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  43. Franzen, S. An electrostatic model for the frequency shifts in the carbonmonoxy stretching band of myoglobin: correlation of hydrogen bonding and the Stark tuning rate. J. Am. Chem. Soc. 124, 13271–13281 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Ovalle, V. J., Hsu, Y.-S., Agrawal, N., Janik, M. J. & Waegele, M. M. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Article  CAS  Google Scholar 

  45. Monteiro, M. C. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  46. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Rooney, C. L. et al. Active sites of cobalt phthalocyanine in electrocatalytic CO2 reduction to methanol. Angew. Chem. 136, e202310623 (2024).

    Article  Google Scholar 

  48. Li, X. & Panetier, J. A. Computational study for CO2-to-CO conversion over proton reduction using [Re[bpyMe(Im-R)](CO)3Cl]+ (R = Me, Me2, and Me4) electrocatalysts and comparison with manganese analogues. ACS Catal. 11, 12989–13000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article  CAS  Google Scholar 

  50. Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).

    Article  Google Scholar 

  51. Salles, F. et al. Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. J. Colloid Interface Sci. 333, 510–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Darwish, I. A. & Uchegbu, I. F. The evaluation of crown ether based niosomes as cation containing and cation sensitive drug delivery systems. Int. J. Pharm. 159, 207–213 (1997).

    Article  CAS  Google Scholar 

  53. Lehn, J.-M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  54. Lu, H.-H. et al. Creating a pseudometallic state of K+ by intercalation into 18-crown-6 grafted on polyfluorene as electron injection layer for high performance pleds with oxygen- and moisture-stable Al cathode. J. Am. Chem. Soc. 133, 9634–9637 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, S. et al. Codeposition modification of cation exchange membranes with dopamine and crown ether to achieve high K+ electrodialysis selectivity. ACS Appl. Mater. Interfaces 11, 17730–17741 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frisch, M. J. et al. Gaussian 16 revision A.03 (Gaussian, 2016).

  58. Staroverov, V. N., Scuseria, G. E., Tao, J. & Perdew, J. P. Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J. Chem. Phys. 119, 12129–12137 (2003).

    Article  CAS  Google Scholar 

  59. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez, C. & Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989).

    Article  CAS  Google Scholar 

  64. Gonzalez, C. & Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990).

    Article  CAS  Google Scholar 

  65. Grimme, S. Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Li, Y.-P., Gomes, J., Mallikarjun Sharada, S., Bell, A. T. & Head-Gordon, M. Improved force-field parameters for QM/MM simulations of the energies of adsorption for molecules in zeolites and a free rotor correction to the rigid rotor harmonic oscillator model for adsorption enthalpies. J. Phys. Chem. C 119, 1840–1850 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States National Science Foundation (NSF)–United States–Israel Binational Science Foundation (BSF) International Collaboration programme in the Division of Chemical, Bioengineering, Environmental, and Transport Systems (NSF grant number 2129963 and BSF grant number 2021671). The catalyst preparation, kinetic studies and SFG measurements were supported by grant number 2129963 (to Q.Z., C.L.R., H.W. and L.R.B.) from the NSF. The AFM and AFM-IR measurements were supported by grant number 2021671 (to H.S. and E.G.) from the BSF. The DFT calculations were supported by grant number 2154724 (to C.Z. and J.A.P.) from the NSF. We also thank the Spiedie cluster at Binghamton University for performing electronic structure calculations.

Author information

Authors and Affiliations

Authors

Contributions

C.L.R. prepared the catalysts and conducted the electrocatalytic tests. Q.Z. conducted the SFG measurements. H.S. conducted the AFM-IR measurements. C.Z. performed the DFT calculations. Q.Z., C.L.R., H.S. and C.Z. analysed the results and participated in writing the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Julien A. Panetier, Elad Gross, Hailiang Wang or L. Robert Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Julien Bonin, Ali Seifitokaldani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, notes, Figs. 1–27 and Tables 1–15.

Supplementary Data 1

Atomic coordinates of the optimized computational mod

Source data

Source Data Fig. 1

Statistical source data for the electrochemical measurements shown in Fig. 1.

Source Data Fig. 2

Unprocessed infrared spectra data for Fig. 2.

Source Data Fig. 3

Unprocessed SFG spectra data for Fig. 3.

Source Data Fig. 6

Statistical source data for the electrochemical measurements and unprocessed SFG spectra shown in Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Rooney, C.L., Shema, H. et al. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat Catal (2024). https://doi.org/10.1038/s41929-024-01190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41929-024-01190-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing