Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrocatalytic cyclic deracemization enabled by a chemically modified electrode

Abstract

Redox chemistry, which is frequently encountered in the formation of new bonds and stereocentres, relies on the compatibility of redox potentials. Despite recent advances, achieving a general electrocatalytic cyclic deracemization process without stoichiometric redox reagents remains a formidable challenge. Here we show that electrocatalytic cyclic deracemization of secondary alcohols can be accomplished through sequential iridium-catalysed enantioselective anodic dehydrogenation and rhodium-catalysed cathodic hydrogenation, utilizing metal hydride catalysis. A considerable hurdle arises as stronger hydride donors necessitate parent metal complexes to possess low reduction potentials, resulting in inherent redox potential incompatibility. Nonetheless, we overcame this incompatibility by leveraging a recyclable rhodium-catalyst-modified electrode as the cathode—an accomplishment that homogeneous rhodium catalysis could not achieve. Our approach enables chemoselective stereochemical editing of bioactive compounds with remarkable functional group tolerance. Surface characterization and mechanistic studies showcased the unique advantages conferred by the chemically modified electrode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrocatalytic cyclic deracemization.
Fig. 2: Reaction development.
Fig. 3: Substrate scope.
Fig. 4: Synthetic applications.
Fig. 5: Mechanistic studies and characterization.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information, or from the authors on reasonable request. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2328338 ((S)-34). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/. Source Data are provided with this paper.

References

  1. Wang, P.-Z., Xiao, W.-J. & Chen, J.-R. Light-empowered contra-thermodynamic stereochemical editing. Nat. Rev. Chem. 7, 35–50 (2022).

    CAS  PubMed  Google Scholar 

  2. Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).

    CAS  PubMed  Google Scholar 

  3. Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Ed. 48, 2648–2654 (2009).

    CAS  Google Scholar 

  4. Chibata, I., Tosa, T. & Sano, R. Amino acid isomerization in the production of l-phenylalanine from d-phenylalanine by bacteria. Appl. Microbiol. 13, 618–624 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alexeeva, M., Enright, A., Dawson, M. J., Mahmoudian, M. & Turner, N. J. Deracemization of α-methylbenzylamine using an enzyme obtained by in vitro evolution. Angew. Chem. Int. Ed. 41, 3177–3180 (2002).

    CAS  Google Scholar 

  6. Adair, G. R. A. & Williams, J. M. J. A novel ruthenium catalysed deracemisation of alcohols. Chem. Commun. 5578–5579 (2005).

  7. Lackner, A. D., Samant, A. V. & Toste, F. D. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. J. Am. Chem. Soc. 135, 14090–14093 (2013).

    CAS  PubMed  Google Scholar 

  8. Ji, Y., Shi, L., Chen, M. W., Feng, G. S. & Zhou, Y. G. Concise redox deracemization of secondary and tertiary amines with a tetrahydroisoquinoline core via a nonenzymatic process. J. Am. Chem. Soc. 137, 10496–10499 (2015).

    CAS  PubMed  Google Scholar 

  9. Wan, M., Sun, S., Li, Y. & Liu, L. Organocatalytic redox deracemization of cyclic benzylic ethers enabled by an acetal pool strategy. Angew. Chem. Int. Ed. 56, 5116–5120 (2017).

    CAS  Google Scholar 

  10. Qu, P., Kuepfert, M., Jockusch, S. & Weck, M. Compartmentalized nanoreactors for one-pot redox-driven transformations. ACS Catal. 9, 2701–2706 (2019).

    CAS  Google Scholar 

  11. Chen, F. et al. Simultaneous access to two enantio-enriched alcohols by a single Ru-catalyst: asymmetric hydrogen transfer from racemic alcohols to matching ketones. ACS Catal. 12, 14429–14435 (2022).

    CAS  Google Scholar 

  12. Holzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    PubMed  Google Scholar 

  13. Troster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).

    Google Scholar 

  14. Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Ed. 59, 21640–21647 (2020).

    CAS  Google Scholar 

  15. Plaza, M., Jandl, C. & Bach, T. Photochemical deracemization of allenes and subsequent chirality transfer. Angew. Chem. Int. Ed. 59, 12785–12788 (2020).

    CAS  Google Scholar 

  16. Grosskopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).

    CAS  PubMed  Google Scholar 

  17. Plaza, M., Grosskopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical Study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    CAS  PubMed  Google Scholar 

  18. Kratz, T. et al. Photochemical deracemization of chiral alkenes via triplet energy transfer. J. Am. Chem. Soc. 144, 10133–10138 (2022).

    CAS  PubMed  Google Scholar 

  19. Kutta, R. J. et al. Multifaceted view on the mechanism of a photochemical deracemization reaction. J. Am. Chem. Soc. 145, 2354–2363 (2023).

    CAS  PubMed  Google Scholar 

  20. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).

    CAS  PubMed  Google Scholar 

  22. Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    CAS  PubMed  Google Scholar 

  23. Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen, L. et al. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 382, 458–464 (2023).

    CAS  PubMed  Google Scholar 

  25. Zhang, Z. & Hu, X. Visible-light-driven catalytic deracemization of secondary alcohols. Angew. Chem. Int. Ed. 60, 22833–22838 (2021).

    CAS  Google Scholar 

  26. Gu, Z. et al. Deracemization through sequential photoredox-neutral and chiral Bronsted acid catalysis. Angew. Chem. Int. Ed. 61, e202211241 (2022).

    CAS  Google Scholar 

  27. Wang, J., Peng, Y., Xu, J. & Wu, Q. Deracemization of racemic alcohols combining photooxidation and biocatalytic reduction. Org. Biomol. Chem. 20, 7765–7769 (2022).

    CAS  PubMed  Google Scholar 

  28. Wendlandt, A. E. Photocatalytic deracemization fixes the mix. Science 366, 304–305 (2019).

    CAS  PubMed  Google Scholar 

  29. Moeller, K. D. Synthetic applications of anodic electrochemistry. Tetrahedron 56, 9527–9554 (2000).

    CAS  Google Scholar 

  30. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Möhle, S. et al. Modern electrochemical aspects for the synthesis of value‐added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Google Scholar 

  32. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    CAS  Google Scholar 

  33. Xiong, P. & Xu, H. C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    CAS  PubMed  Google Scholar 

  34. Yuan, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 52, 3309–3324 (2019).

    CAS  PubMed  Google Scholar 

  35. Jiao, K. J., Xing, Y. K., Yang, Q. L., Qiu, H. & Mei, T. S. Site-selective C–H functionalization via synergistic use of electrochemistry and transition metal catalysis. Acc. Chem. Res. 53, 300–310 (2020).

    CAS  PubMed  Google Scholar 

  36. Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020).

    CAS  PubMed  Google Scholar 

  37. Liu, J., Lu, L., Wood, D. & Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci. 6, 1317–1340 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Siu, J. C., Fu, N. & Lin, S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery. Acc. Chem. Res. 53, 547–560 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, F. & Stahl, S. S. Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron–proton transfer mediators. Acc. Chem. Res. 53, 561–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Malapit, C. A. et al. Advances on the merger of electrochemistry and transition metal catalysis for organic synthesis. Chem. Rev. 122, 3180–3218 (2022).

    CAS  PubMed  Google Scholar 

  43. Corma, A., Navas, J. & Sabater, M. J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev. 118, 1410–1459 (2018).

    CAS  PubMed  Google Scholar 

  44. Reed-Berendt, B. G., Latham, D. E., Dambatta, M. B. & Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS Cent. Sci. 7, 570–585 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Santana, C. G. & Krische, M. J. From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catal. 11, 5572–5585 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Lim, C.-S., Sim, D. S. B., Pan, H.-J. & Zhao, Y. Catalytic enantioselective amination of alcohols by the use of borrowing hydrogen methodology: cooperative catalysis by iridium and a chiral phosphoric acid. Angew. Chem. Int. Ed. 53, 1399–1403 (2014).

    CAS  Google Scholar 

  47. Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rong, Z. Q., Zhang, Y., Chua, R. H., Pan, H. J. & Zhao, Y. Dynamic kinetic asymmetric amination of alcohols: from a mixture of four isomers to diastereo- and enantiopure α-branched amines. J. Am. Chem. Soc. 137, 4944–4947 (2015).

    CAS  PubMed  Google Scholar 

  49. Yang, P. et al. Nickel-catalyzed N-alkylation of acylhydrazines and arylamines using alcohols and enantioselective examples. Angew. Chem. Int. Ed. 56, 14702–14706 (2017).

    CAS  Google Scholar 

  50. Xu, R. et al. Anti-Markovnikov hydroamination of racemic allylic alcohols to access chiral γ-amino alcohols. Angew. Chem. Int. Ed. 59, 21959–21964 (2020).

    CAS  Google Scholar 

  51. Pan, H. J. et al. Catalytic diastereo- and enantioconvergent synthesis of vicinal diamines from diols through borrowing hydrogen. Angew. Chem. Int. Ed. 60, 18599–18604 (2021).

    CAS  Google Scholar 

  52. Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).

    CAS  Google Scholar 

  53. Hickey, D. P., Milton, R. D., Chen, D., Sigman, M. S. & Minteer, S. D. TEMPO-modified linear poly(ethylenimine) for immobilization-enhanced electrocatalytic oxidation of alcohols. ACS Catal. 5, 5519–5524 (2015).

    CAS  Google Scholar 

  54. Das, A. & Stahl, S. S. Noncovalent immobilization of molecular electrocatalysts for chemical synthesis: efficient electrochemical alcohol oxidation with a pyrene–TEMPO conjugate. Angew. Chem. Int. Ed. 56, 8892–8897 (2017).

    CAS  Google Scholar 

  55. Johnson, B. M., Francke, R., Little, R. D. & Berben, L. A. High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. Chem. Sci. 8, 6493–6498 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hashiguchi, S., Fujii, A., Takehara, J., Ikariya, T. & Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J. Am. Chem. Soc. 117, 7562–7563 (1995).

    CAS  Google Scholar 

  57. Hashiguchi, S. et al. Kinetic resolution of racemic secondary alcohols by RuII-catalyzed hydrogen transfer. Angew. Chem. Int. 36, 288–290 (1997).

    CAS  Google Scholar 

  58. Nishibayashi, Y., Yamauchi, A., Onodera, G. & Uemura, S. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine−ruthenium complexes. J. Org. Chem. 68, 5875–5880 (2003).

    CAS  PubMed  Google Scholar 

  59. Li, Y.-Y. et al. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine−Ir(I) complexes. Org. Lett. 8, 5565–5567 (2006).

    CAS  PubMed  Google Scholar 

  60. Arita, S., Koike, T., Kayaki, Y. & Ikariya, T. Aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional amido complexes. Angew. Chem. Int. Ed. 47, 2447–2449 (2008).

    CAS  Google Scholar 

  61. Galvin, C. M. & Waymouth, R. M. Electron-rich phenoxyl mediators improve thermodynamic performance of electrocatalytic alcohol oxidation with an iridium pincer complex. J. Am. Chem. Soc. 142, 19368–19378 (2020).

    CAS  PubMed  Google Scholar 

  62. Morris, R. H. Bronsted–Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 116, 8588–8654 (2016).

    CAS  PubMed  Google Scholar 

  63. Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).

    CAS  PubMed  Google Scholar 

  64. Deronzier, A. & Moutet, J. C. Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications. Acc. Chem. Res. 22, 249–255 (1989).

    CAS  Google Scholar 

  65. Chardon-Noblat, S., de Oliveira, I. M. F., Moutet, J.-C. & Tingry, S. Electrocatalytic hydrogenation on Poly[RhIII(L)2(Cl)2]+ (L = pyrrole-substituted 2,2’-bipyridine or 1,10-phenanthroline) films electrodes. J. Mol. Catal. A 99, 13–21 (1995).

    CAS  Google Scholar 

  66. Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed. 59, 18866–18884 (2020).

    CAS  Google Scholar 

  67. Dieter, H., Sara, F., Iain, L. & Stefan, P. New Indanyloxyphenylcyclopropanecarb oxylic acids. Patent WO 2013/178575 A1 (27 May 2013).

  68. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    CAS  PubMed  Google Scholar 

  69. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    PubMed  PubMed Central  Google Scholar 

  71. Kern, J. C. et al. 1-Methyl-1H-pyrrole-2-carbonitrile containing tetrahydronaphthalene derivatives as non-steroidal progesterone receptor antagonists. Bioorg. Med. Chem. Lett. 20, 4816–4818 (2010).

    CAS  PubMed  Google Scholar 

  72. Ni, D. et al. Stereoselective [4+2]-cycloaddition with chiral alkenylboranes. Angew. Chem. Int. Ed. 59, 11432–11439 (2020).

    CAS  Google Scholar 

  73. Lei, C., Yip, Y. J. & Zhou, J. S. Nickel-catalyzed direct synthesis of aryl olefins from ketones and organoboron reagents under neutral conditions. J. Am. Chem. Soc. 139, 6086–6089 (2017).

    CAS  PubMed  Google Scholar 

  74. Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020).

    CAS  PubMed  Google Scholar 

  75. Zhang, Y. A., Gu, X. & Wendlandt, A. E. A change from kinetic to thermodynamic control enables trans-selective stereochemical editing of vicinal diols. J. Am. Chem. Soc. 144, 599–605 (2022).

    CAS  PubMed  Google Scholar 

  76. Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 378, 383–390 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Oswood, C. J. & MacMillan, D. W. C. Selective isomerization via transient thermodynamic control: dynamic epimerization of trans to cis diols. J. Am. Chem. Soc. 144, 93–98 (2022).

    CAS  PubMed  Google Scholar 

  78. Castillo, C. E. et al. Electrochemical generation and spectroscopic characterization of the key rhodium(III) hydride intermediates of rhodium poly(bipyridyl) H2-evolving catalysts. Inorg. Chem. 57, 11225–11239 (2018).

    CAS  PubMed  Google Scholar 

  79. Bakac, A. Aqueous rhodium(III) hydrides and mononuclear rhodium(II) complexes. Dalton Trans 1589–1596 (2006).

  80. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (John wiley, 2001).

  81. Wang, L. et al. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode. Chem. Commun. 51, 7883–7886 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from National Key R&D Program of China (grant no. 2022YFA1505100 to J.W.), the National Natural Science Foundation of China (grant no. 22201124 to J.W.), the Guangdong Provincial Key Laboratory of Catalysis (grant no. 2020B121201002 to J.W.) and the Innovation Commission of Shenzhen Municipality (grant no. 20231120100305001 to J.W.). We thank C. Huang for performing experiments during the paper’s revision. We thank the Core Research Facilities for their assistance with performing ICP-MS, SEM and EDS experiments. The theoretical work was supported by the Center for Computational Science and Engineering at SUSTech. We thank X.-Y. Liu (Southern University of Science and Technology), G. Dong (University of Chicago) and Z. Huang (University of Hong Kong) for helpful discussions. We thank J. Gu (Southern University of Science and Technology) for assisting the EDS experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.W. conceived and designed the project. C.-J.Z. discovered the reaction and finished the optimization. C.-J.Z. and X.Y. performed other experiments. J.W. performed the computational work. J.W. and C.-J.Z. co-wrote the paper.

Corresponding author

Correspondence to Jianchun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–6, Methods and References.

Supplementary Data 1

Crystallographic data for (S)-34 (CCDC reference no. 2328338).

Supplementary Data 2

Cartesian coordinates of optimized structures.

Source data

Source Data Fig. 4

The original data for Fig. 4a.

Source Data Fig. 5

The original cyclic voltammetry data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CJ., Yang, X. & Wang, J. Electrocatalytic cyclic deracemization enabled by a chemically modified electrode. Nat Catal 7, 878–888 (2024). https://doi.org/10.1038/s41929-024-01189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01189-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing