Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic-scale identification of active sites of oxygen reduction nanocatalysts

Abstract

Heterogeneous nanocatalysts play a crucial role in both the chemical and energy industries. Despite substantial advancements in theoretical, computational and experimental studies, identifying their active sites remains a major challenge. Here we utilize atomic electron tomography to determine the three-dimensional atomic structure of PtNi and Mo-doped PtNi nanocatalysts for the electrochemical oxygen reduction reaction. We then employ the experimental atomic structures as input to first-principles-trained machine learning to identify the active sites of the nanocatalysts. Through the analysis of the structure–activity relationships, we formulate an equation termed the local environment descriptor, which balances the strain and ligand effects to provide physical and chemical insights into active sites in the oxygen reduction reaction. The ability to determine the three-dimensional atomic structure and chemical composition of realistic nanoparticles, combined with machine learning, could transform our fundamental understanding of the active sites of catalysts and guide the rational design of optimal nanocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 3D atomic structure of four representative nanocatalysts determined by AET.
Fig. 2: Atomic-scale characterization of PtNi and Mo-PtNi nanocatalysts after activation.
Fig. 3: Identification of the active sites of the nanocatalysts.

Similar content being viewed by others

Data availability

All of the raw and processed experimental data are available via GitHub at https://github.com/AET-Nanocatalysts/Pt-Alloy.

Code availability

All of the MATLAB source codes for the 3D image reconstruction, atom tracing, refinement and data analysis in this work are available via GitHub at https://github.com/AET-Nanocatalysts/Pt-Alloy.

References

  1. Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Astruc, D. Introduction: nanoparticles in catalysis. Chem. Rev. 120, 461–463 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell, S., Qin, R., Zheng, N. & Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Article  PubMed  Google Scholar 

  6. de Smit, E. et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456, 222–225 (2008).

    Article  PubMed  Google Scholar 

  7. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lamberti, C., Zecchina, A., Groppo, E. & Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Núñez, M., Lansford, J. L. & Vlachos, D. G. Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. Nat. Chem. 11, 449–456 (2019).

    Article  PubMed  Google Scholar 

  16. Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, S. et al. Correlating 3D surface atomic structure and catalytic activities of Pt nanocrystals. Nano Lett. 21, 1175–1183 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J., Jeong, C., Lee, T., Ryu, S. & Yang, Y. Direct observation of three-dimensional atomic structure of twinned metallic nanoparticles and their catalytic properties. Nano Lett. 22, 665–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kluge, R. M. et al. A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy Environ. Sci. 15, 5181–5191 (2022).

    Article  CAS  Google Scholar 

  20. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Jacobse, L., Huang, Y.-F., Koper, M. T. M. & Rost, M. J. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nat. Mater. 17, 277–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Loukrakpam, R. et al. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J. Phys. Chem. C 115, 1682–1694 (2011).

    Article  CAS  Google Scholar 

  27. De Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

    Article  PubMed  Google Scholar 

  28. Wu, J. et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686–9712 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tian, X. et al. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Miao, J., Ercius, P. & Billinge, S. J. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Article  PubMed  Google Scholar 

  33. Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Banham, D. & Ye, S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2, 629–638 (2017).

    Article  CAS  Google Scholar 

  39. Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Jia, Q. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 18, 798–804 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Dionigi, F. et al. Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Lett. 19, 6876–6885 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Polani, S. et al. Size and composition dependence of oxygen reduction reaction catalytic activities of Mo-doped PtNi/C octahedral nanocrystals. ACS Catal. 11, 11407–11415 (2021).

    Article  CAS  Google Scholar 

  43. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  CAS  Google Scholar 

  44. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  46. Nanba, Y. & Koyama, M. An element-based generalized coordination number for predicting the oxygen binding energy on Pt3M (M = Co, Ni, or Cu) alloy nanoparticles. ACS Omega 6, 3218–3226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calle-Vallejo, F. & Bandarenka, A. S. Enabling generalized coordination numbers to describe strain effects. ChemSusChem 11, 1824–1828 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, C. et al. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1−x nanoparticles. Adv. Funct. Mater. 21, 147–152 (2011).

    Article  Google Scholar 

  49. Lee, J. D. et al. Tuning the electrocatalytic oxygen reduction reaction activity of Pt–Co nanocrystals by cobalt concentration with atomic-scale understanding. ACS Appl. Mater. Interfaces 11, 26789–26797 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    Article  CAS  Google Scholar 

  51. Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    Article  PubMed  Google Scholar 

  52. Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9, 62–66 (1979).

    Article  Google Scholar 

  55. Pham, M., Yuan, Y., Rana, A., Osher, S. & Miao, J. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Sci. Rep. 13, 5624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jia, Q. et al. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition–strain–activity relationship. ACS Nano 9, 387–400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Ravel, B. & Gallagher, K. Atomic structure and the magnetic properties of Zr-doped Sm2Co17. Phys. Scr. 2005, 606 (2005).

    Article  Google Scholar 

  59. Newville, M., Līviņš, P., Yacoby, Y., Rehr, J. J. & Stern, E. A. Near-edge x-ray-absorption fine structure of Pb: a comparison of theory and experiment. Phys. Rev. B 47, 14126–14131 (1993).

    Article  CAS  Google Scholar 

  60. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

  61. Do Carmo, M. P. Differential Geometry of Curves and Surfaces 2nd edn (Dover Publications, 2016).

  62. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  PubMed  Google Scholar 

  63. Li, Q.-J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. 10, 3563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mortensen, J. J. et al. GPAW: an open Python package for electronic structure calculations. J. Chem. Phys. 160, 092503 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Larsen, A. H. et al. J. Condens. Matter Phys. 29, 273002 (2017).

  66. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  67. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  68. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  69. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  70. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  71. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  73. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Rasmussen, C. E. in Advanced Lectures on Machine Learning (eds Bousquet, O. et al.) 63–71 (Springer, 2003).

  75. Himanen, L. et al. DScribe: library of descriptors for machine learning in materials science. Comput. Phys. Commun. 247, 106949 (2020).

    Article  CAS  Google Scholar 

  76. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  77. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  78. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2, 1654–1660 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Division of Materials Sciences and Engineering under award DE-SC0010378 (including the AET experiments, 3D image reconstruction, atom tracing, classification and data analysis). It was also partially supported by the NSF DMREF under award number DMR-1437263. G.S. and P.S. acknowledge support by DOE-BES grant DE-SC0019152. AET experiments were performed with TEAM I at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences of the US DOE under contract number DE-AC02-05CH11231. The XAS experiments were conducted on beamline 8-ID (ISS) of the National Synchrotron Light Source II, which is supported by the Office of Science, Office of Basic Energy Sciences of the US DOE under contract number DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

J.M. directed the project; Z.Z., Y.L. and Y.H. synthesized the samples and performed the ORR test; J.Z., P.E., J.C. and J.M. discussed and/or conducted the AET experiments; Q.J. and Q.S. did the XAS experiments; Yao Yang, Yongsoo Yang, Y. Yuan and J.M. performed the 3D image reconstruction, atom tracing and classification; G.S., Z.W. and P.S. carried out the DFT calculations and implemented the ML method with input from Yao Yang, C.O. and J.M.; Yao Yang, J.Z., Z.Z., G.S., C.O., S.M., C.Z., H.H., P.S., Y.H. and J.M. analysed and/or interpreted the results. J.M., Yao Yang, S.M., Z.Z. and G.S. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Philippe Sautet, Yu Huang or Jianwei Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jasna Jankovic, Michihisa Koyama and Woong Hee Lee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Tables 1–6.

Supplementary Video 1

3D atomic structure and chemical composition of four representative nanocatalysts determined by AET. Shown are the 3D surface morphology and chemical composition (row 1), facets (row 2), surface concaveness (row 3) and CN of the surface Pt sites (row 4). The four nanocatalysts correspond to particles 1–4 from left to right.

Supplementary Video 2

Identification of the ORR active sites of the PtNi and Mo-PtNi nanocatalysts. Shown are the ML-identified activity maps for the experimental 3D atomic coordinates of the nanocatalysts (top row) and the LED-based activity maps of the same four nanocatalysts (bottom row). The four nanocatalysts correspond to particles 1–4 from left to right.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhou, J., Zhao, Z. et al. Atomic-scale identification of active sites of oxygen reduction nanocatalysts. Nat Catal 7, 796–806 (2024). https://doi.org/10.1038/s41929-024-01175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01175-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing