Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries


Rechargeable aqueous zinc-ion batteries (AZIBs), renowned for their safety, high energy density and rapid charging, are prime choices for grid-scale energy storage. Historically, ion-shuttling models centring on ion-migration behaviour have dominated explanations for charge/discharge processes in aqueous batteries, like classical ion insertion/extraction and pseudocapacitance mechanisms. However, these models struggle to account for the exceptional performance of AZIBs compared to other aqueous metal-ion batteries. Here we present a catalysis model elucidating the Zn2+ anomaly in aqueous batteries, explaining it through the concept of adsorption in catalysis. Such behaviour can serve the charge/discharge role, predominantly dictated by solvated metal cations and cathode materials. First-principles calculations suggest optimal adsorption/desorption behaviour (water dissociation process) with the Zn2+–vanadium nitride (VN) combination. Experimentally, AZIBs implementing VN cathodes demonstrate fast-charging kinetics, showing a capacity of 577.1 mAh g−1 at a current density of 300,000 mA g−1. The grasp of catalysis steps within AZIBs can drive solutions beyond state-of-the-art fast-charging batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ion-shuttling and catalysis models used to describe AZIBs.
Fig. 2: Mechanistic investigation of the water dissociation model.
Fig. 3: Design of pure VN and morphology of VN@rGO.
Fig. 4: Structural information and evolution of VN@rGO and VNxOy@rGO.
Fig. 5: Electrochemical behaviours of VN@rGO and VNxOy@rGO in 2 M aqueous ZnSO4 solutions.

Similar content being viewed by others

Data availability

Source data are provided with this paper.


  1. Jiang, L. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019).

    Article  CAS  Google Scholar 

  2. Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  3. Xu, C., Li, B., Du, H. & Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article  CAS  Google Scholar 

  4. Li, C., Jin, S., Archer, L. A. & Nazar, L. F. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6, 1733–1738 (2022).

    Article  Google Scholar 

  5. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  6. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2019).

    Article  Google Scholar 

  7. Michelbacher, C. J. et al. Enabling Fast Charging: a Technology Gap Assessment No. INL/EXT-17-41638 (US Department of Energy, 2017).

  8. Tsiropoulos, I., Siskos, P. & Capros, P. The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: factors influencing investments in 2030 and 2050. Appl. Energy 322, 119446 (2022).

    Article  Google Scholar 

  9. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, N. et al. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203–4219 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Jia, X., Liu, C., Neale, Z. G., Yang, J. & Cao, G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, Y. et al. Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries. Nat. Sustain. 5, 890–898 (2022).

    Article  Google Scholar 

  15. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  CAS  Google Scholar 

  16. Fang, G. et al. Simultaneous cationic and anionic redox reactions mechanism enabling high‐rate long‐life aqueous zinc‐ion battery. Adv. Funct. Mater. 29, 1905267 (2019).

    Article  CAS  Google Scholar 

  17. Wang, L., Huang, K. W., Chen, J. & Zheng, J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, M. J., Yaghoobnejad Asl, H. & Manthiram, A. Multivalent-ion versus proton insertion into battery electrodes. ACS Energy Lett. 5, 2367–2375 (2020).

    Article  CAS  Google Scholar 

  19. Wan, F. et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

    Article  CAS  Google Scholar 

  22. Ge, J., Fan, L., Rao, A. M., Zhou, J. & Lu, B. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2021).

    Article  Google Scholar 

  23. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  PubMed  Google Scholar 

  24. Pastel, G. R. et al. A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci. 15, 2460–2469 (2022).

    Article  CAS  Google Scholar 

  25. Cao, L. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Li, K. & Xue, D. Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110, 11332–11337 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Sproul, G. Electronegativity and bond type: predicting bond type. J. Chem. Educ. 78, 387 (2001).

    Article  CAS  Google Scholar 

  28. Kinraide, T. B. & Yermiyahu, U. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity and other physiological effects. J. Inorg. Biochem. 101, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Miranda-Quintana, R. A., Martinez Gonzalez, M. & Ayers, P. W. Electronegativity and redox reactions. Phys. Chem. Chem. Phys. 18, 22235–22243 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Tan, S. et al. Revealing the origin of highly efficient polysulfide anchoring and transformation on anion‐substituted vanadium nitride host. Adv. Funct. Mater. 31, 2008034 (2020).

    Article  Google Scholar 

  31. Li, J. et al. Multi‐scale investigations of δ‐Ni0.25V2O5·nH2O cathode materials in aqueous zinc‐ion batteries. Adv. Energy Mater. 10, 2000058 (2020).

    Article  CAS  Google Scholar 

  32. Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2-nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Rudolph, W. W., Brooker, M. H. & Tremaine, P. R. Raman spectroscopy of aqueous ZnSO4 solutions under hydrothermal conditions: solubility, hydrolysis and sulfate ion pairing. J. Solution Chem. 28, 621–630 (1999).

    Article  CAS  Google Scholar 

  34. Zhao, H. et al. In operando synchrotron studies of NH4+ preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano 14, 11809–11820 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Zuo, S. et al. Direct detection and visualization of the H+ reaction process in a VO2 cathode for aqueous zinc-ion batteries. J. Phys. Chem. Lett. 12, 7076–7084 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Dai, Y. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 33, 2100359 (2021).

    Article  CAS  Google Scholar 

  37. Liu, Y. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 31, 2008033 (2020).

    Article  Google Scholar 

  38. Deng, S. et al. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59, 22002–22006 (2020).

    Article  CAS  Google Scholar 

  39. Wang, L. et al. Ultrahigh-rate and ultralong-life aqueous batteries enabled by special pair-dancing proton transfer. Sci. Adv. 9, eadf4589 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, M. et al. Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy 100, 107539 (2022).

    Article  CAS  Google Scholar 

Download references


This work was supported financially by the National Natural Science Foundation of China (52172233, 51832004, 21905218, 51872218 and 52072285; L.M.), the Natural Science Foundation of Guangdong Province (no. 2021A1515010144; L.M.), the National Key Research and Development Program of China (2020YFA0715000; L.M.), the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHT2020-003; L.M.) and the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (520LH055; L.M.). The computational study was supported by the Marsden Fund Council from Government funding (21-UOA-237; Z.W.) and Catalyst: Seeding General Grant (22-UOA-031-CGS; Z.W.), managed by Royal Society Te Apārangi. All DFT calculations were carried out on the New Zealand eScience Infrastructure (NeSI) high-performance computing facilities. G.I.N.W. is supported by a James Cook Research Fellowship from New Zealand Government funding, administered by the Royal Society Te Apārangi. This research also used resources of the Advanced Photon Source, a US DOE Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02- 06CH11357.

Author information

Authors and Affiliations



J. Lu, K.A., Z.W. and L.M. supervised this project. Y.D., R.L., C.Z. and Jiantao Li conceived the ideas. Y.D. designed the materials and experiments. R.L., C.Z. and Y.M. carried out theoretical calculations. Jiantao Li and Y.R. conducted XAS and high-energy XRD characterizations. Y.Y. and C.Y. designed the figures and participated in the draft writing. Z.C. performed materials synthesis and tested the electrochemical performance. J.Z. carried out SEM and EIS measurements. Jinghao Li carried out basic characterizations such as XRD and XPS. R.Y. performed the STEM characterization. L.C. carried out UPS tests. S.Z., G.H. and P.R.S. carried out the X-ray micro-CT characterizations. Q.A. provided help with SEM, XRD and UPS tests. Y.D., R.L., C.Z., G.I.N.W. and Jiantao Li wrote the manuscript. All authors discussed the results and assisted with manuscript preparation.

Corresponding authors

Correspondence to Jun Lu, Khalil Amine, Ziyun Wang or Liqiang Mai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Stefan Freunberger, Yan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–35, Tables 1–4, notes 1–7 and references 1–170.

Source data

Source Data Figs. 1–5

Unprocessed statistical source data.

Atomic Coordinates

Atomic coordinates of the optimized computational models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Lu, R., Zhang, C. et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat Catal 7, 776–784 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing