Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bias-free solar NH3 production by perovskite-based photocathode coupled to valorization of glycerol

Abstract

Photoelectrochemical production of ammonia (NH3) is potentially eco-friendly but suffers from a low solar-to-ammonia productivity (SAP) and requires a high additional bias for the overall NH3 production from nitrate reduction and water oxidation. Here we applied a high-performance triple-cation lead halide (Cs0.05(FA0.83MA0.17)0.95Pb(Br0.17I0.83)3) perovskite photocathode with integrated electrocatalyst to achieve high SAP and coupled glycerol oxidation instead of water oxidation for bias-free NH3 production. Stable, selective NH3 production and glycerol oxidation were achieved by respectively loading Ru and Pt electrocatalysts on conductive and stable titanate nanosheet supports, instead of corrodible carbon-based supports. Our photoelectrochemical NH3 production system coupled to glycerol oxidation demonstrated a photocurrent density of 21.2 ± 0.7 mA cm−2 and SAP of 1,744.9 ± 20.6 µgNH3 cm2 h1 with 99.5 ± 0.8% Faradaic efficiency without applying any additional bias. Simultaneously, glycerol was selectively oxidized to glyceric acid as a major value-added product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the PEC cell used for NH3 production.
Fig. 2: Characterization and performance of Ru@TiNS electrocatalyst for NH3 production.
Fig. 3: PEC performance of perovskite photocathode for NH3 production.
Fig. 4: Physiochemical and morphological characterization of prepared electrocatalysts.
Fig. 5: Unassisted NH3 production with simultaneous glycerol valorization.

Similar content being viewed by others

Data availability

The experimental data in the main text or Supplementary Information during the current study are included in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  2. Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia production processes. Front. Energy Res. 9, 1–19 (2021).

    Article  Google Scholar 

  3. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  4. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    Article  CAS  Google Scholar 

  5. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  6. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  7. Arnaiz del Pozo, C. & Cloete, S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 255, 115312 (2022).

    Article  CAS  Google Scholar 

  8. Ahmet, I. Y. et al. Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical–photovoltaic water splitting device. Sustain. Energy Fuels 3, 2366–2379 (2019).

    Article  CAS  Google Scholar 

  9. Mehrotra, R., Oh, D. & Jang, J. W. Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode. Nat. Commun. 12, 1–9 (2021).

    Article  Google Scholar 

  10. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  PubMed  Google Scholar 

  11. Wang, F. et al. Fabrication of an amorphous metal oxide/p-BiVO4 photocathode: understanding the role of entropy for reducing nitrate to ammonia. Inorg. Chem. Front. 9, 805–813 (2022).

    Article  CAS  Google Scholar 

  12. Song, Y. et al. Simultaneous photoelectrocatalytic oxidation and nitrite–ammonia conversion with artificial photoelectrochemistry cells. Adv. Energy Mater. 12, 2201782–2201792 (2022).

    Article  CAS  Google Scholar 

  13. Kim, J. H., Hansora, D., Sharma, P., Jang, J. W. & Lee, J. S. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, F. et al. Frustrated Lewis pairs boosting photoelectrochemical nitrate reduction over ZnIn2S4/BiVO4 heterostructure. Chem. Eng. J. 450, 138260 (2022).

    Article  CAS  Google Scholar 

  15. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ko, M. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 5, 37–44 (2022).

    Article  CAS  Google Scholar 

  17. Bhattacharjee, S. et al. Reforming of soluble biomass and plastic derived waste using a bias-free Cu30Pd70|Perovskite|Pt photoelectrochemical device. Adv. Funct. Mater. 32, 2109313–2109325 (2022).

    Article  CAS  Google Scholar 

  18. Li, X. et al. Photoelectrochemical reduction of nitrate to ammonia over CuPc/CeO2 heterostructure: understanding the synergistic effect between oxygen vacancies and Ce sites. Chem. Eng. J. 433, 133225–133233 (2022).

    Article  CAS  Google Scholar 

  19. Kim, H. E. et al. Photoelectrochemical nitrate reduction to ammonia on ordered silicon nanowire array photocathodes. Angew. Chem. Int. Ed. 61, e202204 (2022).

    Article  Google Scholar 

  20. Tayebi, M. et al. Highly efficient and stable WO3/MoS2-MoOX photoanode for photoelectrochemical hydrogen production; a collaborative approach of facet engineering and P–N junction. Chem. Eng. J. 446, 136830–136845 (2022).

    Article  CAS  Google Scholar 

  21. Ko, M. et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10, 1–10 (2019).

    Article  Google Scholar 

  22. Zhang, P. et al. Dendritic core–shell nickel–iron–copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat. Commun. 9, 1–10 (2018).

    Google Scholar 

  23. Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article  CAS  Google Scholar 

  24. Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni, Z. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2022).

    Article  CAS  Google Scholar 

  28. Crespo-Quesada, M. et al. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 6–12 (2016).

    Article  Google Scholar 

  29. Li, J. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142, 7036–7046 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Yu, W., Raciti, D., Gracias, D. H. & Wang, C. Electrocatalytic oxidation of glycerol on platinum. J. Phys. Chem. C 123, 426–432 (2019).

    Article  CAS  Google Scholar 

  31. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  32. Xiong, P. et al. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 32, 1–12 (2020).

    Article  Google Scholar 

  33. Sasaki, T. et al. A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties. Chem. Mater. 10, 4123–4128 (1998).

    Article  CAS  Google Scholar 

  34. Naik, K. M., Higuchi, E. & Inoue, H. Pt nanoparticle-decorated two-dimensional oxygen-deficient TiO2 nanosheets as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Nanoscale 12, 11055–11062 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Fievet, F. et al. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 47, 5187–5233 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, Y. et al. Support structure–catalyst electroactivity relation for oxygen reduction reaction on platinum supported by two-dimensional titanium carbide. Nano Energy 79, 105363–105373 (2021).

    Article  CAS  Google Scholar 

  37. Wu, Z. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  38. Li, Z. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 9, 1–8 (2018).

    Article  Google Scholar 

  39. Son, D. Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Ochoa-Martinez, E. et al. Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 6, 2626–2634 (2021).

    Article  CAS  Google Scholar 

  42. Torres, A., Roy, D., Subramaniam, B. & Chaudhari, R. V. Kinetic modeling of aqueous-phase glycerol hydrogenolysis in a batch slurry reactor. Ind. Eng. Chem. Res. 49, 10826–10835 (2010).

    Article  CAS  Google Scholar 

  43. van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  44. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M. & Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. 46, 4434–4440 (2007).

    Article  CAS  Google Scholar 

  45. Ament, K. et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets. ACS Catal. 11, 2754–2762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Kamachi, T. et al. Linear correlations between adsorption energies and HOMO levels for the adsorption of small molecules on TiO2 surfaces. J. Phys. Chem. C 123, 20988–20997 (2019).

    Article  CAS  Google Scholar 

  50. Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    Article  CAS  Google Scholar 

  51. Portillo-Vélez, N. S., Olvera-Neria, O., Hernández-Pérez, I. & Rubio-Ponce, A. Localized electronic states induced by oxygen vacancies on anatase TiO2 (101) surface. Surf. Sci. 616, 115–119 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The National Research Foundation (NRF; RS-2023-00222006 and 2023R1A2C3002881 to J.S.-Y.; 2019M1A2A2065612, 2021R1C1C1012258, 2019H1D3A1A01103006, 2016R1A5A1012966 and 2022H1D3A3A01081140 to J.-W.J.), as well as the Research Fund (1.230040.01 to J.-W.J.) of the UNIST, sponsored this study (Ulsan National Institute of Science and Technology). J.-W.J. also acknowledges the Alchemist Project funded by the Ministry of Trade, Industry and Energy thorough the Korean Evaluation Institute of Industrial Technology (1415184376 (20019321)). T.F.J. was supported as part of the Cleantech FWP 100898 funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) for ATR-SEIRAS studies. J.M. acknowledges a graduate fellowship through the National Science Foundation Graduate Research Fellowship under grant no. DGE-1656518. Experiments at PLS-II 6D UNIST-PAL beamline were supported in part by MSIT, POSTECH and UNIST Central Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

A.T. and J.-W.J. conceived and proposed this work. T.F.J., S.-Y.J. and J.-W.J. directed the project. A.T., R.M., M.A.M. and J.K. designed and performed the experiments. A.T. synthesized and characterized Ru@TiNS, Pt@TiNS and Ru@rGO. J.K. and A.T. measured the catalytic performance for NITRR, and GOR with quantification of products. M.A.M. prepared and characterized the perovskite. R.M. integrated perovskite with Ru@TiNS and conducted the PEC experiments. A.T. and R.M. designed and performed the bias-free experiments. M.Z. and G.L. performed the DFT calculations and analysed them. M.T. analysed and deconvoluted the XPS results. D.O. helped with the UV–Vis and HPLC measurements. D.O., J.E.M., S.-W.L. and T.F.J. measured and analysed the in situ IR spectra. S.-h.L. and T.J.S. conducted XANES and EXAFS experiments and analysed them. A.T., R.M., M.A.M., J.K., T.F.J., J.S.-Y. and J.-W.J. co-wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Thomas F. Jaramillo, Sung-Yeon Jang or Ji-Wook Jang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jungang Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45, Tables 1–7, Notes 1–5 and references.

Supplementary Data 1

Source data for Supplementary Figs. 1–45 and Tables 1–7.

Supplementary Code 2

Source data for supplementary DFT structure (zip file of Supplementary Figs. 19a–d and 20a,b).

Source data

Source Data Fig. 2

Source data and statistical source data for Fig. 2j.

Source Data Fig. 3

Source data and statistical source data for Fig. 3e.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data and statistical source data for Fig. 5e,f,h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayyebi, A., Mehrotra, R., Mubarok, M.A. et al. Bias-free solar NH3 production by perovskite-based photocathode coupled to valorization of glycerol. Nat Catal 7, 510–521 (2024). https://doi.org/10.1038/s41929-024-01133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01133-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing