Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:


Understanding organic electrosynthesis

A deeper understanding of reaction mechanisms should lead to improvements in the selectivity of organic electrosynthesis methods. This approach has now been used to explain the role of magnesium diacetate in the Ag-electrocatalysed reductive coupling of sp3 organic chlorides with aldehydes or ketones with increased selectivity for the desired alcohol product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical reductive C(sp3) – C(sp3) coupling of organic chlorides with aldehydes/ketones.


  1. Faraday, M. Pogg. Ann. 33, 433–451 (1834).

    Google Scholar 

  2. Kolbe, H. Justus Liebigs Ann. Chem. 69, 257–294 (1849).

    Article  Google Scholar 

  3. Yoshida, J. I., Kataoka, K., Horcajada, R. & Nagaki, A. Chem. Rev. 108, 2265–2299 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Waldvogel, S. R. & Janza, B. Angew. Chem. Int. Edn 53, 7122–7123 (2014).

    Article  CAS  Google Scholar 

  5. Novaes, L. F. T. et al. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vijh, A. K. & Conway, B. E. Chem. Rev. 67, 623–664 (1967).

    Article  CAS  Google Scholar 

  7. Chen, Q.-C., Kress, S., Molinelli, R. & Wuttig, A. Nat. Catal. (2024).

    Article  Google Scholar 

  8. Isse, A. A., Gottardello, S., Durante, C. & Gennaro, A. Phys. Chem. Chem. Phys. 10, 2409–2416 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Chaussard, J. et al. Synthesis 1990, 369–381 (1990).

    Article  Google Scholar 

  10. Klein, M. & Waldvogel, S. R. Angew. Chem. Int. Edn 61, e202204140 (2022).

    Article  ADS  CAS  Google Scholar 

  11. Osawa, M. Bull. Chem. Soc. Jpn 70, 2861–2880 (1997).

    Article  CAS  Google Scholar 

  12. Osawa, M., Ataka, K.-I., Yoshii, K. & Nishikawa, Y. Appl. Spectrosc. 47, 1497–1502 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Cuesta, A. in Vibrational Spectroscopy at Electrified Interfaces (eds Wieckowski, A. et al.) Ch. 8, 266–306 (John Wiley & Sons, 2013).

  14. Bewick, A., Mellor, J. M. & Pons, B. S. Electrochim. Acta 25, 931–941 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Angel Cuesta.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuesta, A. Understanding organic electrosynthesis. Nat Catal 7, 115–116 (2024).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing