Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Current state and future prospects of liquid metal catalysis

Abstract

The need for advances in the sustainable production of fuels and chemicals has accelerated the push for innovation in catalytic systems that enable progress in chemical science and other technologies. Liquid metals have recently gained traction as an emerging class of catalysts that offer exciting sets of features, strengths and challenges. Here we provide insights into how current advances in liquid metal chemistry can be leveraged for an already burgeoning field of catalysis. By reflecting on recent demonstrations of efficient liquid metal-driven catalytic systems and leveraging the recent advancements in the chemistry of liquid metals, we glance at applications that stand to benefit from this class of catalysts, particularly in supporting oxidation, reduction and chemical looping reactions. Moreover, we explain how the utilization of next-generation liquid metal catalysts is being shaped by current reactor designs and highlight how a series of analogies with homogeneous catalysts can inform the effective deployment of liquid metal catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview of liquid metal catalysts.
Fig. 2: Schematic representation of prospective reactor designs for liquid metal catalysis.
Fig. 3: Key examples of liquid metal catalysis across major reaction avenues.

Similar content being viewed by others

References

  1. Zuraiqi, K. et al. Liquid metals in catalysis for energy applications. Joule 4, 2290–2321 (2020).

    CAS  Google Scholar 

  2. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    CAS  PubMed  Google Scholar 

  3. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    CAS  PubMed  Google Scholar 

  4. Zheng, J. et al. Dynamic zinc in liquid metal media as a metal ion source for highly porous ZIF-8 synthesis. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202300969 (2023).

  5. Liu, H. et al. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 4, 202–211 (2021).

    CAS  Google Scholar 

  6. Geißler, T. et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int. J. Hydrog. Energy 40, 14134–14146 (2015).

    Google Scholar 

  7. Upham, D. C. et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358, 917–921 (2017).

    CAS  PubMed  Google Scholar 

  8. Palmer, C. et al. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 3, 83–89 (2020).

    CAS  Google Scholar 

  9. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 15, 595–600 (2022).

    CAS  Google Scholar 

  10. Esrafilzadeh, D. et al. Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019).

    PubMed  PubMed Central  Google Scholar 

  11. Serban, M., Lewis, M. A., Marshall, C. L. & Doctor, R. D. Hydrogen production by direct contact pyrolysis of natural gas. Energy Fuels 17, 705–713 (2003).

    CAS  Google Scholar 

  12. Plevan, M. et al. Thermal cracking of methane in a liquid metal bubble column reactor: experiments and kinetic analysis. Int. J. Hydrog. Energy 40, 8020–8033 (2015).

    CAS  Google Scholar 

  13. Geißler, T. et al. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chem. Eng. J. 299, 192–200 (2016).

    Google Scholar 

  14. Abánades, A. et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. Int. J. Hydrog. Energy 41, 8159–8167 (2016).

    Google Scholar 

  15. Leal Pérez, B. J. et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept and techno-economic assessment. Int. J. Hydrog. Energy 46, 4917–4935 (2021).

    Google Scholar 

  16. Shaikh, A. & Al-Dahhan, M. H. A review on flow regime transition in bubble columns. Int. J. Chem. React. Eng. 5, 1 (2007).

    Google Scholar 

  17. Schultz, I. & Agar, D. W. Decarbonisation of fossil energy via methane pyrolysis using two reactor concepts: fluid wall flow reactor and molten metal capillary reactor. Int. J. Hydrog. Energy 40, 11422–11427 (2015).

    CAS  Google Scholar 

  18. Munera Parra, A. A. & Agar, D. W. Molten metal capillary reactor for the high-temperature pyrolysis of methane. Int. J. Hydrog. Energy 42, 13641–13648 (2017).

    CAS  Google Scholar 

  19. Becker, T. & Agar, D. W. Theoretical studies on a rotating film reactor for hydrogen production from methane. Chem. Ing. Tech. 94, 681–689 (2022).

    CAS  Google Scholar 

  20. Russo, V., Milicia, A., Di Serio, M. & Tesser, R. Falling film reactor modelling for sulfonation reactions. J. Chem. Eng. 377, 120464 (2019).

    CAS  Google Scholar 

  21. Munera Parra, A. A., Asmanoglo, C. & Agar, D. W. Modelling and optimization of a moving-bed adsorptive reactor for the reverse water-gas shift reaction. Comput. Chem. Eng. 109, 203–215 (2018).

    CAS  Google Scholar 

  22. García-Verdugo, E., Altava, B., Burguete, M. I., Lozano, P. & Luis, S. V. Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem. 17, 2693–2713 (2015).

    Google Scholar 

  23. Gnanasekaran, T. In Science and Technology of Liquid Metal Coolants in Nuclear Engineering (ed. Gnanasekaran, T.) 385–435 (Woodhead Publishing in Energy, 2022).

  24. Søgaard, A., de Oliveira, A. L., Taccardi, N., Haumann, M. & Wasserscheid, P. Ga-Ni supported catalytically active liquid metal solutions (SCALMS) for selective ethylene oligomerization. Catal. Sci. Technol. 11, 7535–7539 (2021).

    PubMed  PubMed Central  Google Scholar 

  25. Hohner, C. et al. Pt-Ga model SCALMS on modified HOPG: thermal behavior and stability in UHV and under near-ambient conditions. J. Phys. Chem. C 124, 2562–2573 (2020).

    CAS  Google Scholar 

  26. Raman, N. et al. GaPt supported catalytically active liquid metal solution catalysis for propane dehydrogenation–support influence and coking studies. ACS Catal. 11, 13423–13433 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wirth, J. et al. Unraveling structural details in Ga-Pd SCALMS systems using correlative nano-CT, 360° electron tomography and analytical TEM. Catalysts 11, 810 (2021).

    CAS  Google Scholar 

  28. Li, B. et al. Electrochemical properties of gadolinium on liquid gallium electrode in LiClKCl eutectic. J. Rare Earths 36, 656–661 (2018).

    CAS  Google Scholar 

  29. Deshpande, R. D., Li, J., Cheng, Y.-T. & Verbrugge, M. W. Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 158, A845 (2011).

    CAS  Google Scholar 

  30. Liu, K., Liu, Y.-L., Chai, Z.-F. & Shi, W.-Q. Evaluation of the electroextractions of Ce and Nd from LiCl-KCl molten salt using liquid Ga electrode. J. Electrochem. Soc. 164, D169 (2017).

    CAS  Google Scholar 

  31. Balej, J. Standard potential of sodium amalgam at 25 °C. Electrochim. Acta 21, 953–956 (1976).

    CAS  Google Scholar 

  32. Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    CAS  PubMed  Google Scholar 

  33. Yan, Z., Ji, M., Xia, J. & Zhu, H. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Adv. Energy Mater. 10, 1902020 (2020).

    CAS  Google Scholar 

  34. Guo, W., Zhang, K., Liang, Z., Zou, R. & Xu, Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019).

    CAS  PubMed  Google Scholar 

  35. Crawford, J., Yin, H., Du, A. & O’Mullane, A. P. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew. Chem. Int. Ed. 61, e202201604 (2022).

    CAS  Google Scholar 

  36. Butler, J. N. & Meehan, M. L. Hydrogen evolution on gallium, indium-gallium and mercury-gallium electrodes. Trans. Faraday Soc. 62, 3524–3534 (1966).

    CAS  Google Scholar 

  37. Hou, Y. et al. A self-healing electrocatalytic system via electrohydrodynamics induced evolution in liquid metal. Nat. Commun. 13, 7625 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Y., Zhang, W. & Wang, H. Synthesis and application of core-shell liquid metal particles: a perspective of surface engineering. Mater. Horiz. 8, 56–77 (2021).

    CAS  PubMed  Google Scholar 

  39. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Google Scholar 

  40. Shah, J. R., Harrison, J. M. & Carreon, M. L. Ammonia plasma-catalytic synthesis using low melting point alloys. Catalysts 8, 437 (2018).

    Google Scholar 

  41. Wang, Q. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 4, 959–967 (2021).

    CAS  Google Scholar 

  42. Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    CAS  PubMed  Google Scholar 

  45. Rahim, M. A. et al. Low-temperature liquid platinum catalyst. Nat. Chem. 14, 935–941 (2022).

    CAS  PubMed  Google Scholar 

  46. Ruffman, C., Lambie, S., Steenbergen, K. G. & Gaston, N. Structural and electronic changes in Ga-In and Ga-Sn alloys on melting. Phys. Chem. Chem. Phys. 25, 1236–1247 (2023).

    CAS  PubMed  Google Scholar 

  47. Ye, L. et al. Low-temperature CO2 reduction using Mg-Ga liquid metal interface. Adv. Mater. Interfaces 10, 2201625 (2023).

    CAS  Google Scholar 

  48. Ye, L. et al. CO2 reduction on the Li-Ga liquid metal surface. J. Mater. Chem. A 11, 8809–8816 (2023).

    CAS  Google Scholar 

  49. Sinfelt, J. H., Via, G. H. & Lytle, F. W. Application of EXAFS in catalysis. Structure of bimetallic cluster catalysts. Catal. Rev. 26, 81–140 (1984).

    CAS  Google Scholar 

  50. Boo, J., Lee, S. J., Park, N.-K., Kim, M. & Kang, D. Catalytic decomposition of NO using molten gallium: an experimental and computational study. Mol. Catal. 543, 113144 (2023).

    CAS  Google Scholar 

  51. Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council (ARC) Discovery Project scheme DP220101923.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karma Zuraiqi or Torben Daeneke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Peter Wasserscheid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S.S., Zuraiqi, K., Zavabeti, A. et al. Current state and future prospects of liquid metal catalysis. Nat Catal 6, 1131–1139 (2023). https://doi.org/10.1038/s41929-023-01083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01083-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing