Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells


Rational design of efficient hydrogen oxidation reaction (HOR) electrocatalysts with maximum utilization of platinum-group metal sites is critical to hydrogen fuel cells, but remains a major challenge due to the formidable potential-dependent energy barrier for hydrogen intermediate (H*) desorption on single metal centres. Here we report atomically dispersed iridium–phosphorus (Ir–P) catalytic pairs with strong electronic coupling that integratively facilitate HOR kinetics, in which the reactive hydroxyl species adsorbed on the more oxophilic P site induces an alternative thermodynamic pathway to facilely combine with H* on the adjacent Ir atom, whereas isolated single-atom Ir catalysts are inactive. In H2–O2 fuel cells, this catalyst enables a peak power density of 1.93 W cm−2 and an anodic mass activity as high as 17.11 A mgIr−1 at 0.9 ViR-free, significantly outperforming commercial Pt/C. This work not only advances the development of anodic catalysts for fuel cells, but also provides a precise and universal active-site design principle for multi-intermediate catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization of Ir1–P1 pairs dispersed on N,P-co-doped graphitic carbon.
Fig. 2: Electrocatalytic HOR performance.
Fig. 3: Identification of reactive intermediates and HOR mechanism.
Fig. 4: Theoretical calculations for the overall HOR process on Ir1–P1/NPG.
Fig. 5: PEMFC performance.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. Chong, L. et al. Ultralow-loading platinum–cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  3. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  4. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Y. et al. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc. Natl Acad. Sci. USA 116, 24425–24432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo, F. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, R. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614–623 (2021).

    Article  CAS  Google Scholar 

  8. Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    Article  CAS  Google Scholar 

  9. Ni, W. et al. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem. Int. Ed. 58, 7445–7449 (2019).

    Article  CAS  Google Scholar 

  10. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  12. Wang, H. & Abruña, H. D. IrPdRu/C as H2 oxidation catalysts for alkaline fuel cells. J. Am. Chem. Soc. 139, 6807–6810 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Q. et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 11, 4246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  15. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  CAS  Google Scholar 

  16. Yang, H. B. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  19. Long, X. et al. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 11, 4074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by X-ray absorption spectroscopy. Phys. Rev. B 86, 195131 (2012).

    Article  Google Scholar 

  21. Yuan, K. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 142, 2404–2412 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

    Article  CAS  Google Scholar 

  23. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010).

    Article  CAS  Google Scholar 

  24. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441–446 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, B., Santra, M. & Yoshikai, N. A highly modular one-pot multicomponent approach to functionalized benzo[b]phosphole derivatives. Angew. Chem. Int. Ed. 53, 7543–7546 (2014).

    Article  CAS  Google Scholar 

  27. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article  CAS  Google Scholar 

  28. Zhuang, L., Jin, J. & Abruña, H. D. Direct observation of electrocatalytic synergy. J. Am. Chem. Soc. 129, 11033–11035 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Wiley, 2001).

  30. Lazaridis, T., Stühmeier, B. M., Gasteiger, H. A. & El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 5, 363–373 (2022).

    Article  CAS  Google Scholar 

  31. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  PubMed  Google Scholar 

  32. Yang, C.-L. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 374, 459–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  34. Labi, T. et al. Increasing fuel cell durability during prolonged and intermittent fuel starvation using supported IrOx. J. Power Sources 490, 229568 (2021).

    Article  CAS  Google Scholar 

  35. Hu, Y. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 60, 6533–6538 (2021).

    Article  CAS  Google Scholar 

  36. Galus, Z., Olson, C., Lee, H. Y. & Adams, R. N. Rotating disk electrodes. Anal. Chem. 34, 164–166 (1962).

    Article  CAS  Google Scholar 

  37. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  45. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  46. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  47. Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Article  Google Scholar 

  48. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  Google Scholar 

  49. Sun, Y., Lu, J. & Zhuang, L. Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochim. Acta 55, 844–850 (2010).

    Article  CAS  Google Scholar 

  50. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  51. Hansen, J. N. et al. Is there anything better than Pt for HER? ACS Energy Lett. 6, 1175–1180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This work was financially supported by the City University of Hong Kong start up fund and the Singapore Agency for Science, Technology and Research (AME IRG A20E5c0080). H.B.Y. acknowledges support from the National Natural Science Foundation of China (grant number 22075195). Y.L. acknowledges support from the National Natural Science Foundation of China (grant number 52171199). S.-F.H. acknowledges financial support from the National Science and Technology Council, Taiwan (contract number NSTC 111-2628-M-A49-007). Part of this work was also financially supported by the National Key R&D Program of China (number 2022YFA1503102), the NSFC (numbers 22022504, 22033005 and 92261111), the Science, Technology and Innovation Commission of Shenzhen Municipality (number JCYJ20210324103608023), the Guangdong ‘Pearl River’ Talent Plan (number 2019QN01L353) and the Guangdong Provincial Key Laboratory of Catalysis (number 2020B121201002). Computational resources are supported by the Center for Computational Science and Engineering at SUSTech and the CHEM high-performance supercomputer cluster (CHEM-HPC) located in the Department of Chemistry, SUSTech.

Author information

Authors and Affiliations



Q.W., H.B.Y. and B.L. conceived and designed the project. Q.W., Y.C. and H.B.Y. performed the catalyst synthesis, structural characterizations and electrochemical measurements. W.L., W.W. and Y.H. obtained the TEM images. C.-W.T., S.-F.H., W.C. and H.M.C acquired the X-ray absorption spectroscopies and provided expertise for data analysis. H.W., Z.Z., H.B.T. and Y.L. conducted the fuel cell tests. H.C., C.Z., Y.-G.W. and J.L. carried out the theoretical calculations. Q.W., H.B.Y. and B.L. discussed the results and drafted the article. All the authors reviewed and contributed to this paper.

Corresponding authors

Correspondence to Hua Bing Tao, Yang-Gang Wang, Yujing Li, Hong Bin Yang or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Lin Zhuang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of Contents, Supplementary Figs. 1–61, Tables 1–4 and References.

Supplementary Data 1

Atomic coordinates of the optimized computational models, initial and final configurations in molecular dynamics simulations.

Source data

Source Data Fig. 1

Source Data Fig. 1.

Source Data Fig. 2

Source Data Fig. 2.

Source Data Fig. 3

Source Data Fig. 3.

Source Data Fig. 4

Source Data Fig. 4.

Source Data Fig. 5

Source Data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, H., Cao, H. et al. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat Catal 6, 916–926 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing