Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis

Abstract

Acidic electrochemical CO2 reduction (CO2R) addresses CO2 loss and thus mitigates the energy penalties associated with CO2 recovery; however, acidic CO2R suffers low selectivity. One promising remedy—using a high concentration of alkali cations—steers CO2R towards multi-carbon (C2+) products, but these same alkali cations result in salt formation, limiting operating stability to <15 h. Here we present a copper catalyst functionalized with cationic groups (CG) that enables efficient CO2 activation in a stable manner. By replacing alkali cations with immobilized benzimidazolium CG within ionomer coatings, we achieve over 150 h of stable CO2R in acid. We find the water-management property of CG minimizes proton migration that enables operation at a modest voltage of 3.3 V with mildly alkaline local pH, leading to more energy-efficient CO2R with a C2+ Faradaic efficiency of 80 ± 3%. As a result, we report an energy efficiency of 28% for acidic CO2R towards C2+ products and a single-pass CO2 conversion efficiency exceeding 70%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational studies of CG-functionalized catalysts in acidic CO2R.
Fig. 2: Cationic functional group enables CO2R in acidic media.
Fig. 3: Performance of the CG-functionalized catalysts in acid media.
Fig. 4: Stability and SPC performance of carbon-protected CG-medium Cu in acidic media.

Similar content being viewed by others

Data availability

Source data for the stability test shown in Fig. 4a,b and the atomic coordinates of the optimized computational models can be found in figshare26. Data that support the findings of this study can be found in the article and Supplementary information. All other data supporting this work are available from the corresponding authors upon reasonable request.

References

  1. Li, L., Li, X., Sun, Y. & Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51, 1234–1252 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Kibria Nabil, S., McCoy, S. & Kibria, M. G. Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks. Green Chem. 23, 867–880 (2021).

    Article  CAS  Google Scholar 

  3. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Pelayo García de Arquer, F. et al. CO2 electrolysis to multi-carbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  5. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  6. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019).

    Article  Google Scholar 

  7. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    Article  CAS  Google Scholar 

  8. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  9. Larrazabal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    Article  CAS  Google Scholar 

  11. Blommaert, M. A., Subramanian, S., Yang, K., Smith, W. A. & Vermaas, D. A. High indirect energy consumption in AEM-based CO2 electrolyzers demonstrates the potential of bipolar membranes. ACS Appl. Mater. Interfaces 14, 557–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, J. E. et al. CO2 electrolysis to multi-carbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  14. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  15. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  16. Monteiro, M. C. O., Dattila, F., Lopez, N. & Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Article  CAS  Google Scholar 

  18. Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ren, W., Xu, A., Chan, K. & Hu, X. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, e2022141 (2022).

    Article  Google Scholar 

  20. Ma, Z. et al. CO2 electroreduction to multi-carbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Ummireddi, A. K., Sharma, S. K. & Pala, R. G. S. Ammonium ionic liquid cation promotes electrochemical CO2 reduction to ethylene over formate while inhibiting the hydrogen evolution on a copper electrode. Catal. Sci. Technol. 12, 519–529 (2022).

    Article  CAS  Google Scholar 

  23. Pankhurst, J. R., Guntern, Y. T., Mensi, M. & Buonsanti, R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem. Sci. 10, 10356–10365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhong, S. et al. Efficient electrochemical transformation of CO2 to C2/C3 chemicals on benzimidazole-functionalized copper surfaces. Chem. Commun. 54, 11324–11327 (2018).

    Article  CAS  Google Scholar 

  25. Banerjee, S., Gerke, C. S. & Thoi, V. S. Guiding CO2RR selectivity by compositional tuning in the electrochemical double layer. Acc. Chem. Res. 55, 504–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Fan, M. et al. Cationic-group functionalized electrocatalysts enable stable acidic CO2 electrolysis. figshare https://doi.org/10.6084/m9.figshare.22819415 (2023).

  27. Wright, A. G. et al. Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 9, 2130–2142 (2016).

    Article  CAS  Google Scholar 

  28. Fan, J. et al. Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nat. Commun. 10, 2306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fan, J. et al. Cationic polyelectrolytes, stable in 10 M KOHaq at 100 °C. ACS Macro Lett. 6, 1089–1093 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Ge, A. et al. Interfacial structure and electric field probed by in situ electrochemical vibrational Stark effect spectroscopy and computational modeling. J. Phys. Chem. C 121, 18674–18682 (2017).

    Article  CAS  Google Scholar 

  31. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  32. Harroun, S. G. et al. Electrochemical surface-enhanced Raman spectroscopy (E-SERS) of novel biodegradable ionic liquids. Phys. Chem. Chem. Phys. 15, 19205–19212 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Fu, J. Y. et al. In situ Raman monitoring of potential-dependent adlayer structures on the Au(111)/ionic liquid interface. Langmuir 38, 6209–6216 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Dunwell, M., Yan, Y. & Xu, B. Understanding the influence of the electrochemical double-layer on heterogeneous electrochemical reactions. Curr. Opin. Chem. Eng. 20, 151–158 (2018).

    Article  Google Scholar 

  35. Malkani, A. S. et al. Understanding the electric and non-electric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salvatore, D. A. et al. Designing anion-exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  CAS  Google Scholar 

  37. Deimede, V., Voyiatzis, G. A., Kallitsis, J. K., Qingfeng, L. & Bjerrum, N. J. Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications. Macromolecules 33, 7609–7617 (2000).

    Article  CAS  Google Scholar 

  38. Li, Q., He, R., Berg, R. W., Hjuler, H. A. & Bjerrum, N. J. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion. 168, 177–185 (2004).

    Article  CAS  Google Scholar 

  39. Quartarone, E. et al. Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9, 349–355 (2009).

    Article  CAS  Google Scholar 

  40. Chen, Z. Water balancing. Nat. Energy 5, 12–13 (2020).

    Article  CAS  Google Scholar 

  41. Bonn, M. et al. Suppression of proton mobility by hydrophobic hydration. J. Am. Chem. Soc. 131, 17070–17071 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, C. et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl Acad. Sci. USA 109, 9744–9749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao-Thang, D. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  Google Scholar 

  45. Hori, Y. et al. ‘Deactivation of copper electrode’ in electrochemical reduction of CO2. Electrochim. Acta 50, 5354–5369 (2005).

    Article  CAS  Google Scholar 

  46. Miao, R. K. et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5, 2742–2753 (2021).

    Article  CAS  Google Scholar 

  47. O'Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multi-carbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  CAS  Google Scholar 

  48. Stern, O. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochem. Angew. Physikal. Chem. 30, 508–516 (1924).

    CAS  Google Scholar 

  49. Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  50. Martinez, L., Andrade, R., Birgin, E. G. & Martinez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gaussian 16 Rev. C.01 (Gaussian, 2016).

  52. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  53. Heinz, H., Vaia, R. A., Farmer, B. L. & Naik, R. R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard–Jones potentials. J. Phys. Chem. C 112, 17281–17290 (2008).

    Article  CAS  Google Scholar 

  54. Joung, I. S. & Cheatham, T. E. III. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, C., Wen, B. & Bai, B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem. Eng. Sci. 138, 616–621 (2015).

    Article  CAS  Google Scholar 

  56. Jewett, A. I. et al. Moltemplate: a tool for coarse-grained modeling of complex biological matter and soft condensed matter physics. J. Mol. Biol. 433, 166841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential-based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  59. Tee, S. R. & Searles, D. J. Fully periodic, computationally efficient constant potential molecular dynamics simulations of ionic liquid supercapacitors. J. Chem. Phys. 156, 184101 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Ahrens-Iwers, L. J. V., Janssen, M., Tee, S. R. & Meissner, R. H. ELECTRODE: an electrochemistry package for atomistic simulations. J. Chem. Phys. 157, 084801 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Langford, L. et al. Constant-potential molecular dynamics simulations of molten-salt double layers for FLiBe and FLiNaK. J. Chem. Phys. 157, 094705 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Li, X. Y. et al. Molecular understanding of the Helmholtz capacitance difference between Cu(100) and graphene electrodes. J. Chem. Phys. 158, 084701 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  64. Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Natural Sciences and Engineering Research Council (NSERC) of Canada and TotalEnergies SE. Support from Canada Research Chairs Program is also gratefully acknowledged. Infrastructure provided through the Canada Foundation for Innovation and the Ontario Research Fund supported the work. R.K.M. thanks NSERC, Hatch and the Government of Ontario for their support through graduate scholarships. P.O. thanks the Climate Positive Energy for its support through Rising Stars in Clean Energy Postdoctoral Fellowship. Density functional theory calculations were performed on the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto. The computational study is supported by the Marsden Fund Council from Government funding (21-UOA-237) and Catalyst: Seeding General Grant (22-UOA-031-CGS), managed by Royal Society Te Apārangi. Z.W. and Y.M. acknowledge the use of New Zealand eScience Infrastructure (NeSI) high-performance computing facilities, consulting support and/or training services as part of this research. G.I.N.W. and Y.M. acknowledge funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology, the Energy Education Trust of New Zealand and the Royal Society Te Apārangi. Z.W. and Y.M. graciously acknowledge D. J. Searles (University of Queensland) and J. Cheng (Xiamen University) for their support and scientific discussions on the computational work.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and E.H.S. supervised the project. M.F., J.E.H. and R.K.M. designed and carried out all the experiments. J.E.H. conceived the idea. Y.M., P.O. and Y.C. carried out the MD simulation. Z.W. supervised the MD simulation. Y.M., Y.C., G.I.N.W. and Z.W. analysed the MD simulation results. M.F. and J.E.H. analysed the experimental data and prepared the paper. R.K.M. performed the slim-flow cell design and experiments. F.L. carried out the COMSOL simulation. M.F. carried out all EIS measurements and analysed data. J.E.H. and Z.C. carried out the SERS measurements, and M.F. analysed the SERS data. Z.Z. performed the pH-sensitive Raman tests. J.Z., A.O. and Y.W. synthesized catalysts. W.N. and Y.Z. carried out scanning electron microscopy characterization. Y.Y. performed the X-ray diffraction characterization. B.K. and K.G. carried out the contact angle measurements. C.P.O., Y.X. and Y.C.X. performed product analysis. All authors discussed the results and assisted during paper preparation.

Corresponding authors

Correspondence to Ziyun Wang, Edward H. Sargent or David Sinton.

Ethics declarations

Competing interests

There is a US provisional patent application (63/381.180) titled ‘A modified catalyst for operating electrochemical carbon dioxide reduction in a non-alkali acidic medium and related techniques’, filed by the authors M.F., J.E.H., R.K.M., E.H.S. and D.S of this article and their institutions. The other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Peng Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Figs. 1–43, Tables 1–11and Videos 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Huang, J.E., Miao, R.K. et al. Cationic-group-functionalized electrocatalysts enable stable acidic CO2 electrolysis. Nat Catal 6, 763–772 (2023). https://doi.org/10.1038/s41929-023-01003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01003-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing