Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water

Abstract

In nature, photosynthetic organelles harness solar radiation to produce energy-rich compounds from water and atmospheric CO2 via exquisite supramolecular assemblies. Although artificial photocatalytic cycles have been shown to occur at higher intrinsic efficiencies, the low selectivity and stability in water for multi-electron CO2 reduction hamper their practical applications. The creation of water-compatible artificial photocatalytic systems mimicking the natural photosynthetic apparatus for selective and efficient solar fuel production represents a major challenge. Here we show a highly stable and efficient artificial spherical chromatophore nanomicelle system self-assembled from Zn porphyrin amphiphiles with a Co catalyst in water for CO2-to-methane conversion with a turnover number >6,600 and 89% selectivity over 30 days. The hierarchical self-assembly induced a spherical antenna effect that could facilitate the photocatalytic process with an initial 15% solar-to-fuel efficiency. Furthermore, it has a capability to efficiently reduce atmospheric CO2 into methane with high selectivity in water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and structures of the artificial spherical chromatophore nanomicelle system.
Fig. 2: Characterization of artificial spherical chromatophore nanomicelles.
Fig. 3: Photocatalytic performance of Nalg-1–4.
Fig. 4: fs-TA dynamics of the nanomicelle system.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  PubMed  Google Scholar 

  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Google Scholar 

  4. van Oijen, A. M., Ketelaars, M., Köhler, J., Aartsma, T. J. & Schmidt, J. Unraveling the electronic structure of individual photosynthetic pigment–protein complexes. Science 285, 400–402 (1999).

    Google Scholar 

  5. Melis, A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272–280 (2009).

    CAS  Google Scholar 

  6. Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994).

    PubMed  Google Scholar 

  7. McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).

    CAS  Google Scholar 

  8. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  PubMed  Google Scholar 

  9. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    CAS  PubMed  Google Scholar 

  10. Ben-Shem, A., Frolow, F. & Nelson, N. Crystal structure of plant photosystem I. Nature 426, 630–635 (2003).

    CAS  PubMed  Google Scholar 

  11. Bahatyrova, S. et al. The native architecture of a photosynthetic membrane. Nature 430, 1058–1062 (2004).

    CAS  PubMed  Google Scholar 

  12. Şener, M. K., Olsen, J. D., Hunter, C. N. & Schulten, K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc. Natl Acad. Sci. USA 104, 15723–15728 (2007).

    PubMed  PubMed Central  Google Scholar 

  13. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS  PubMed  Google Scholar 

  14. Yang, J., Yoon, M.-C., Yoo, H., Kim, P. & Kim, D. Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes. Chem. Soc. Rev. 41, 4808–4826 (2012).

    CAS  PubMed  Google Scholar 

  15. Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate–silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013).

  16. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    CAS  PubMed  Google Scholar 

  17. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    CAS  PubMed  Google Scholar 

  18. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    CAS  PubMed  Google Scholar 

  19. Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019).

    CAS  PubMed  Google Scholar 

  20. Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    CAS  PubMed  Google Scholar 

  21. Hansen, M., Troppmann, S. & König, B. Artificial photosynthesis at dynamic self-assembled interfaces in water. Chem. Eur. J. 22, 58–72 (2016).

    CAS  PubMed  Google Scholar 

  22. Hansen, M., Li, F., Sun, L. & König, B. Photocatalytic water oxidation at soft interfaces. Chem. Sci. 5, 2683–2687 (2014).

    CAS  Google Scholar 

  23. Troppmann, S. & König, B. Functionalized membranes for photocatalytic hydrogen production. Chem. Eur. J. 20, 14570–14574 (2014).

    CAS  PubMed  Google Scholar 

  24. Wang, H.-Y. et al. Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway. Langmuir 26, 9766–9771 (2010).

    CAS  PubMed  Google Scholar 

  25. Dumele, O. et al. Photocatalytic aqueous CO2 reduction to CO and CH4 sensitized by ullazine supramolecular polymers. J. Am. Chem. Soc. 144, 3127–3136 (2022).

    CAS  PubMed  Google Scholar 

  26. Tian, J. et al. Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nat. Chem. 12, 1150–1156 (2020).

    CAS  PubMed  Google Scholar 

  27. Bonchio, M. et al. Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nat. Chem. 11, 146–153 (2019).

    CAS  PubMed  Google Scholar 

  28. Lazarides, T. et al. Photocatalytic hydrogen production from a noble metal-free system based on a water-soluble porphyrin derivative and a cobaloxime catalyst. Chem. Commun. 50, 521–523 (2014).

  29. Behar, D. et al. Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies. J. Phys. Chem. A 102, 2870–2877 (1998).

    CAS  Google Scholar 

  30. Nganga, J., Chaudhri, N., Brückner, C. & Angeles-Boza, A. M. β-Oxochlorin cobalt(II) complexes catalyze the electrochemical reduction of CO2. Chem. Commun. 57, 4396–4399 (2021).

  31. Boutin, E. et al. Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza-macrocyclic and polypyridine complexes. Chem. Soc. Rev. 49, 5772–5809 (2020).

  32. Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    CAS  Google Scholar 

  33. Gonglach, S. et al. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide. Nat. Commun. 10, 3864 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Weingarten, A. S. et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 137, 15241–15246 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

  36. Tian, J. et al. Supramolecular metal–organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat. Commun. 7, 11580 (2016).

  37. Faul, C. F. J. & Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 15, 673–683 (2003).

    CAS  Google Scholar 

  38. Şener, M. et al. Photosynthetic vesicle architecture and constraints on efficient energy harvesting. Biophys. J. 99, 67–75 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    CAS  PubMed  Google Scholar 

  40. Bonin, J., Chaussemier, M., Robert, M. & Routier, M. Homogeneous photocatalytic reduction of CO2 to CO using iron(0) porphyrin catalysts: mechanism and intrinsic limitations. ChemCatChem 6, 3200–3207 (2014).

  41. Dlugokencky, E. J. & Pieter, T. Trends in Atmospheric Carbon Dioxide (National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, 2019); www.esrl.noaa.gov/gmd/ccgg/trends/

  42. Wu, X. et al. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 141, 5267–5274 (2019).

    CAS  PubMed  Google Scholar 

  43. Sengupta, S. & Würthner, F. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 46, 2498–2512 (2013).

    CAS  PubMed  Google Scholar 

  44. Rao, H., Bonin, J. & Robert, M. Non-sensitized selective photochemical reduction of CO2 to CO under visible light with an iron molecular catalyst. Chem. Commun. 53, 2830–2833 (2017).

    CAS  Google Scholar 

  45. D’Souza, F. et al. Electrochemical and spectroelectrochemical behavior of cobalt(III), cobalt(II), and cobalt(I) complexes of meso-tetraphenylporphyrinate bearing bromides on the .beta.-pyrrole positions. Inorg. Chem. 32, 4042–4048 (1993).

    Google Scholar 

  46. Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    CAS  PubMed  Google Scholar 

  47. Call, A. et al. Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catal. 9, 4867–4874 (2019).

    CAS  Google Scholar 

  48. Sinha, S., Zhang, R. & Warren, J. J. Low overpotential CO2 activation by a graphite-adsorbed cobalt porphyrin. ACS Catal. 10, 12284–12291 (2020).

    CAS  Google Scholar 

  49. Hossain, M. N. et al. Temperature-dependent product distribution of electrochemical CO2 reduction on CoTPP/MWCNT composite. Appl. Catal. B 304, 120863 (2022).

  50. Kullmann, M. et al. Ultrafast exciton dynamics after Soret- or Q-band excitation of a directly β,β′-linked bisporphyrin. Phys. Chem. Chem. Phys. 14, 8038–8050 (2012).

    CAS  PubMed  Google Scholar 

  51. Neta, P. & Harriman, A. Zinc porphyrin π-radical cations in aqueous solution. Formation, spectra and decay kinetics. J. Chem. Soc. Faraday Trans. 81, 123–138 (1985).

    CAS  Google Scholar 

  52. Brennan, B. J., Durrell, A. C., Koepf, M., Crabtree, R. H. & Brudvig, G. W. Towards multielectron photocatalysis: a porphyrin array for lateral hole transfer and capture on a metal oxide surface. Phys. Chem. Chem. Phys. 17, 12728–12734 (2015).

    CAS  PubMed  Google Scholar 

  53. Shen, J., Kolb, M. J., Göttle, A. J. & Koper, M. T. M. DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 120, 15714–15721 (2016).

    CAS  Google Scholar 

  54. Zhang, X., Cibian, M., Call, A., Yamauchi, K. & Sakai, K. Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 9, 11263–11273 (2019).

    CAS  Google Scholar 

  55. Muresan, N. M., Willkomm, J., Mersch, D., Vaynzof, Y. & Reisner, E. Immobilization of a molecular cobaloxime catalyst for hydrogen evolution on a mesoporous metal oxide electrode. Angew. Chem. Int. Ed. 51, 12749–12753 (2012).

    CAS  Google Scholar 

  56. Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    PubMed  Google Scholar 

  58. Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    PubMed  Google Scholar 

  59. Yao, C. L., Li, J. C., Gao, W. & Jiang, Q. Cobalt–porphine catalyzed CO2 electro-reduction: a novel protonation mechanism. Phys. Chem. Chem. Phys. 19, 15067–15072 (2017).

  60. Wang, C. et al. An intriguing window opened by a metallic two-dimensional Lindqvist–cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction. J. Mater. Chem. A 8, 14807–14814 (2020).

  61. Guo, L. & Guo, S. Mechanistic understanding of CO2 reduction reaction towards C1 products by molecular transition metal-porphyrin catalysts. Int. J. Hydrog. Energy 46, 10608–10623 (2021).

  62. Pati, P. B. et al. Photocathode functionalized with a molecular cobalt catalyst for selective carbon dioxide reduction in water. Nat. Commun. 11, 3499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Arcudi, F., Đorđević, L., Nagasing, B., Stupp, S. I. & Weiss, E. A. Quantum dot-sensitized photoreduction of CO2 in water with turnover number >80,000. J. Am. Chem. Soc. 143, 18131–18138 (2021).

  64. Gong, Y.-N. et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 142, 16723–16731 (2020).

    CAS  PubMed  Google Scholar 

  65. Zhang, H. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem. Int. Ed. 55, 14310–14314 (2016).

    CAS  Google Scholar 

  66. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Warren, S. C. et al. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS ONE 8, e70687 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Manton, J. C., Long, C., Vos, J. G. & Pryce, M. T. Porphyrin–cobaloxime complexes for hydrogen production, a photo- and electrochemical study, coupled with quantum chemical calculations. Dalton Trans. 43, 3576–3583 (2014).

    CAS  PubMed  Google Scholar 

  71. Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mikkelsen, M., Jorgensen, M. & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

J.T. acknowledges the funding support from National Key Research and Development Program of China (2022YFA1206200); Shanghai Institute of Organic Chemistry and Shanghai Branch, CAS; Shanghai Rising-Star Program (22QA1411200); and the National Natural Science Foundation of China (no. 22271306). J.T. acknowledges the Marie-Curie Fellowship. I.M. acknowledges the Canada 150 Research Chair and NSERC Discovery Grant. R.Y. acknowledges the funding support from Young Scientists Fund of the National Natural Science Foundation of China (grant no. 21905240); the Shenzhen Research Institute, City University of Hong Kong; the State Key Laboratory of Marine Pollution (SKLMP) Seed Collaborative Research Fund; the Guangdong Basic and Applied Basic Research Fund (2022A1515011333); the Shenzhen Science and Technology Program (JCYJ20220818101204009); Hong Kong Research Grant Council (21300620) and the State Key Laboratory of Marine Pollution Internal Research Fund (SKLMP/IRF/0029). D.L.P. and L.D. thank the University of Hong Kong Development Fund 2013-2014 project ‘New Ultrafast Spectroscopy Experiments for Shared Facilities’. We thank the Shanghai Synchrotron Radiation Facility for providing the BL16B1 and BL10U1 beamline for collecting the synchrotron X-ray scattering data. We acknowledge access and support of the GW4 Facility for High-Resolution Electron Cryo-Microscopy, funded by the Wellcome Trust (202904/Z/16/Z and 206181/Z/17/Z) and BBSRC (BB/R000484/1). We thank Y. Zhang and X. Jin for the useful discussions. We thank M. Sener and D. H. Fackler for permission to use the visual molecular dynamics model in Fig. 1c.

Author information

Authors and Affiliations

Authors

Contributions

J.T. conceived, designed and supervised the research. J.T., J.Y., Q.T., S.-B.Y. and R.Y. carried out most of the experiments. M.Z., L.H., J.S., Y.S., J.Z., D.M., Y.L., Q.-Y.Q., F.T. and L.Z. conducted part of the experiments. J.-C.E. performed the TEM, STEM and EDX imaging. R.L.H performed the AFM analysis. U.B. performed the cryo-TEM imaging. L.D. and D.L.P. performed the fs-TA studies. J.T., L.D., D.L.P. and R.Y. analysed the data and wrote the manuscript with input from the other authors. I.M. provided useful inputs and comments on the manuscript.

Corresponding authors

Correspondence to Lili Du, David Lee Phillips, Ruquan Ye or Jia Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–83, Tables 1–8 and References.

Supplementary Data 1

Atomic coordinates of optimized computational model of CO-CoN4.

Supplementary Data 2

Atomic coordinates of optimized computational model of ZnN4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Huang, L., Tang, Q. et al. Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water. Nat Catal 6, 464–475 (2023). https://doi.org/10.1038/s41929-023-00962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00962-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing