Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism

Abstract

Ammonia plays a substantial role in agriculture and the next generation of carbon-free energy supply. Electrocatalytic nitrate reduction to NH3 is attractive for nitrate removal and NH3 production under ambient conditions. However, the energy efficiency is limited by the high reaction overpotential. Here we propose a three-step relay mechanism composed of a spontaneous redox reaction, electrochemical reduction and electrocatalytic reduction to overcome this issue. RuxCoy alloys were designed and adopted as model catalysts. Ru15Co85 exhibits an onset potential of +0.4 V versus reversible hydrogen electrode, and an energy efficiency of 42 ± 2%. The high performance results in a low production cost of US$0.49 ± 0.02 per kilogram of ammonia. The high nitrate reduction performances on Ru15Fe85 and Ru15Ni85 also highlight the promising potential of the relay mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalyst design for the NO3RR.
Fig. 2: Structural characterization of RuxCoyOz and RuxCoy HNDs.
Fig. 3: Electrocatalytic performance for the NO3RR.
Fig. 4: Mechanistic studies for the NO3RR over Ru15Co85 HNDs.
Fig. 5: The NO3RR pathway over Ru15Co85 HNDs.
Fig. 6: Theoretical calculation results for the NO3RR.

Similar content being viewed by others

Data availability

Data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Van Langevelde, P. H., Katsounaros, I. & Koper, M. T. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  2. Christensen, C. H., Johannessen, T., Sørensen, R. Z. & Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 111, 140–144 (2006).

    Article  CAS  Google Scholar 

  3. Van der Ham, C. J., Koper, M. T. & Hetterscheid, D. G. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    Article  PubMed  Google Scholar 

  4. Rogan, W. J. & Brady, M. T. Drinking water from private wells and risks to children. Pediatrics 123, e1123–e1137 (2009).

    Article  PubMed  Google Scholar 

  5. Li, L. et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. 60, 14131–14137 (2021).

    Article  CAS  Google Scholar 

  6. Sun, J. et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ. Sci. 14, 865–872 (2021).

    Article  CAS  Google Scholar 

  7. Yuan, S. et al. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 4, 2249 (2013).

    Article  PubMed  Google Scholar 

  8. Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev 6, 730–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, F. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, G. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    Article  CAS  Google Scholar 

  11. Wang, A. et al. Electrochemistry-stimulated environmental bioremediation: development of applicable modular electrode and system scale-up. Environ. Sci. Ecotechnol. 3, 100050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zheng, W. et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater. Environ. Sci. Technol. 55, 13231–13243 (2021).

    CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Li, J. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142, 7036–7046 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Dima, G. E., de Vooys, A. C. A. & Koper, M. T. M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 554−555, 15–23 (2003).

    Article  Google Scholar 

  16. Gatla, S. et al. Impact of Co-components on the state of Pd and the performance of supported Pd/TiO2 catalysts in the gas-phase acetoxylation of toluene. ChemCatChem 3, 1893–1901 (2011).

    Article  CAS  Google Scholar 

  17. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

  18. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  19. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Miao, M. et al. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. Eur. J. 23, 10947–10961 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Hoster, H. E. Anodic hydrogen oxidation at bare and Pt-modified Ru(0001) in flowing electrolyte-theory versus experiment. MRS Online Proc. Library 1388, 10 (2012).

    Article  Google Scholar 

  22. Tian, X. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Y., Shi, Y. & Zhang, B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting. Acc. Chem. Res. 51, 1711–1721 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Chee, S. W., Tan, S. F., Baraissov, Z., Bosman, M. & Mirsaidov, U. Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. Nat. Commun. 8, 1224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, Z. et al. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat. Commun. 10, 1394 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu, T. et al. High-index faceted RuCo nanoscrews for water electrosplitting. Adv. Energy Mater. 10, 2002860 (2020).

    Article  CAS  Google Scholar 

  27. He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Zhuang, Z. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 10, 4875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).

    Article  CAS  Google Scholar 

  30. Niu, S., Li, S., Du, Y., Han, X. & Xu, P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020).

    Article  CAS  Google Scholar 

  31. Hodgetts, R. Y. et al. Refining universal procedures for ammonium quantification via rapid 1H NMR analysis for dinitrogen reduction studies. ACS Energy Lett. 5, 736–741 (2020).

    Article  CAS  Google Scholar 

  32. Xia, C. et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020).

    Article  CAS  Google Scholar 

  33. MacFarlane, D. R. et al. A roadmap to the ammonia economy. Joule 4, 1186–1205 (2020).

    Article  CAS  Google Scholar 

  34. Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    Article  CAS  Google Scholar 

  35. Wang, Z., Young, S. D., Goldsmith, B. R. & Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. J. Catal. 395, 143–154 (2021).

    Article  CAS  Google Scholar 

  36. Liu, H. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem. Int. Ed. 61, e202202556 (2022).

    CAS  Google Scholar 

  37. Zhou, Y. et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 3, 454–462 (2020).

    Article  CAS  Google Scholar 

  38. Koper, M. T. M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  CAS  Google Scholar 

  39. Yao, Y., Zhu, S., Wang, H., Li, H. & Shao, M. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Katsounaros, I. et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt (100) in alkaline environment. J. Catal. 359, 82–91 (2018).

    Article  CAS  Google Scholar 

  41. Liu, H. et al. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catal. 13, 1513–1521 (2023).

    Article  CAS  Google Scholar 

  42. Fanning, J. C. The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 199, 159–179 (2000).

    Article  CAS  Google Scholar 

  43. Yang, J. et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. Int. Ed. 54, 10889–10893 (2015).

    Article  CAS  Google Scholar 

  44. Tufts, B. J. et al. XPS and EXAFS studies of the reactions of cobalt (III) ammine complexes with gallium arsenide surfaces. J. Am. Chem. Soc. 112, 5123–5136 (1990).

    Article  CAS  Google Scholar 

  45. McCrory, C. C., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, J. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9, 1900149 (2019).

    Article  Google Scholar 

  47. McCrory, C. C. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, J. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021).

    Article  Google Scholar 

  49. Calle-Vallejo, F., Huang, M., Henry, J. B., Koper, M. T. & Bandarenka, A. S. Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. Phys. Chem. Chem. Phys. 15, 3196–3202 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (grants nos. 22071173 (Y.Y.), 22271213 (B.Z.) and 21871206 (B.Z.)) and the Natural Science Foundation of Tianjin City (no. 20JCJQJC00050 (Y.Y.)). We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support. We thank Y. Liu in the Analysis and Testing Center at Tianjin University for in situ ATR-FTIR assistance and L. Zheng at the 1W1B beamline of the Beijing Synchrotron Radiation Facility for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and Y.Y. conceived the idea and supervised the project. B.Z., Y.Y. and S.H. designed the experiments. S.H. synthesized the materials and carried out electrochemical measurements. H.L. and R.Y. performed theoretical calculations. S.H. and T.L. carried out in situ experiments. S.H. and F.C. drew the schematic diagram. B.Z., Y.Y., H.L., and S.H. wrote the paper, with comments from all authors.

Corresponding authors

Correspondence to Yifu Yu or Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, notes 1–8 and Tables 1–8.

Supplementary Data

Source Date of DFT

Source data

Source Data Fig. 1

Catalyst design for the NO3−RR

Source Data Fig. 2

Structural characterization of RuxCoyOz and RuxCoy HNDs

Source Data Fig. 3

Electrocatalytic performance for the NO3−RR

Source Data Fig. 4

Mechanistic studies for NO3−RR over Ru15Co85 HNDs

Source Data Fig. 5

NO3−RR pathway over Ru15Co85 HNDs

Source Data Fig. 6

Theoretical calculation results for NO3−RR

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Li, H., Li, T. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat Catal 6, 402–414 (2023). https://doi.org/10.1038/s41929-023-00951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00951-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing