Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal surfaces catalyse polarization-dependent hydride transfer from H2

Abstract

Hydride transfer is a critical elementary reaction step that spans biological catalysis, organic synthesis and energy conversion. Conventionally, hydride transfer reactions are performed using (bio)molecular hydride reagents under homogeneous conditions. Here we report a conceptually distinct heterogeneous hydride transfer reaction via the net electrocatalytic hydrogen reduction reaction (HRR), which reduces H2 to hydrides. The reaction proceeds by H2 dissociative adsorption on a metal electrode to form surface M−H species, which are then negatively polarized to drive hydride transfer to molecular hydride acceptors with up to 91% Faradaic efficiency. The hydride transfer reactivity of surface M−H species is highly tunable, and, depending on the electrode potential, the thermodynamic hydricity of Pt−H on the same Pt electrode can continuously span a range of >40 kcal mol−1. This work highlights the critical role of electrical polarization on heterogeneous hydride transfer reactivity and establishes a sustainable strategy for accessing reactive hydrides directly from H2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of heterogeneous hydride transfer and the HRR.
Fig. 2: Heterogeneous hydride transfer via electrocatalytic HRR.
Fig. 3: Thermodynamic studies reveal Nernstian behaviour of reversible HRR.
Fig. 4: Schematic of the polarization dependence of interfacial hydride transfer.
Fig. 5: Thermochemical cycle correlating surface hydricity to the applied potential.
Fig. 6: Kinetics studies of interfacial hydride transfer.
Fig. 7: Effect of electrode material on HRR kinetics.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in Supplementary Information of the published Article or are available from the corresponding author on reasonable request.

References

  1. Belenky, P., Bogan, K. L. & Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci. 32, 12–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hollmann, F., Arends, I. W. C. E. & Holtmann, D. Enzymatic reductions for the chemist. Green Chem. 13, 2285–2314 (2011).

    Article  CAS  Google Scholar 

  3. Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).

    Article  PubMed  Google Scholar 

  4. Deno, N. C., Peterson, H. J. & Saines, G. S. The hydride-transfer reaction. Chem. Rev. 60, 7–14 (1960).

    Article  CAS  Google Scholar 

  5. An, X.-D. & Xiao, J. Recent advances in hydride transfer-involved C(sp3)-H activation reactions. Org. Chem. Front. 8, 1364–1383 (2021).

    Article  CAS  Google Scholar 

  6. Wang, F. & Stahl, S. S. Electrochemical oxidation of organic molecules at lower overpotential: accessing broader functional group compatibility with electron-proton transfer mediators. Acc. Chem. Res. 53, 561–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).

    Article  CAS  Google Scholar 

  8. Yang, J. Y., Kerr, T. A., Wang, X. S. & Barlow, J. M. Reducing CO2 to HCO2 at mild potentials: lessons from formate dehydrogenase. J. Am. Chem. Soc. 142, 19438–19445 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, A., Semwal, S. & Choudhury, J. Emerging implications of the concept of hydricity in energy-relevant catalytic processes. Chem. Eur. J. 27, 5842–5857 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Dey, S., Masero, F., Brack, E., Fontecave, M. & Mougel, V. Electrocatalytic metal hydride generation using CPET mediators. Nature 607, 499–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Ilic, S., Gesiorski, J. L., Weerasooriya, R. B. & Glusac, K. D. Biomimetic metal-free hydride donor catalysts for CO2 reduction. Acc. Chem. Res. 55, 844–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ilic, S., Alherz, A., Musgrave, C. B. & Glusac, K. D. Thermodynamic and kinetic hydricities of metal-free hydrides. Chem. Soc. Rev. 47, 2809–2836 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Mayr, H. & Patz, M. Scales of nucleophilicity and electrophilicity: a system for ordering polar organic and organometallic reactions. Angew. Chem. Int. Ed. 33, 938–957 (1994).

    Article  Google Scholar 

  15. Hammes-Schiffer, S. Comparison of hydride, hydrogen atom and proton-coupled electron transfer reactions. ChemPhysChem 3, 33–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J.-D., Xue, J. & Cheng, J.-P. Understanding the role of thermodynamics in catalytic imine reductions. Chem. Soc. Rev. 48, 2913–2926 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Brereton, K. R., Smith, N. E., Hazari, N. & Miller, A. J. M. Thermodynamic and kinetic hydricity of transition metal hydrides. Chem. Soc. Rev. 49, 7929–7948 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Ferrin, P., Kandoi, S., Nilekar, A. U. & Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf. Sci. 606, 679–689 (2012).

    Article  CAS  Google Scholar 

  19. Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C. 114, 18182–18197 (2010).

    Article  Google Scholar 

  20. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, 2001).

  21. Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques and Applications (Wiley, 2011).

  22. Eisenstein, O. & Crabtree, R. H. Outer sphere hydrogenation catalysis. New J. Chem. 37, 21–27 (2013).

    Article  CAS  Google Scholar 

  23. Jin, W. et al. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation—a review. ChemCatChem 11, 924–960 (2019).

    Article  CAS  Google Scholar 

  24. Liu, K., Qin, R. & Zheng, N. Insights into the interfacial effects in heterogeneous metal nanocatalysts toward selective hydrogenation. J. Am. Chem. Soc. 143, 4483–4499 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Aireddy, D. R. & Ding, K. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 12, 4707–4723 (2022).

    Article  CAS  Google Scholar 

  26. Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal. 5, 6509–6523 (2015).

    Article  CAS  Google Scholar 

  27. Wyvratt, B. M. et al. Reactivity of hydrogen on and in nanostructured molybdenum nitride: crotonaldehyde hydrogenation. ACS Catal. 6, 5797–5806 (2016).

    Article  CAS  Google Scholar 

  28. Cai, H., Schimmenti, R., Nie, H., Mavrikakis, M. & Chin, Y.-H. C. Mechanistic role of the proton-hydride pair in heteroarene catalytic hydrogenation. ACS Catal. 9, 9418–9437 (2019).

    Article  CAS  Google Scholar 

  29. Shangguan, J. et al. The role of protons and hydrides in the catalytic hydrogenolysis of guaiacol at the ruthenium nanoparticle-water interface. ACS Catal. 10, 12310–12332 (2020).

    Article  CAS  Google Scholar 

  30. Bender, M. T., Lam, Y. C., Hammes-Schiffer, S. & Choi, K.-S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 142, 21538–21547 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Barton, E. E., Rampulla, D. M. & Bocarsly, A. B. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Zeitler, E. L. et al. Isotopic probe illuminates the role of the electrode surface in proton coupled hydride transfer electrochemical reduction of pyridinium on Pt(111). J. Electrochem. Soc. 162, H938–H944 (2015).

    Article  CAS  Google Scholar 

  33. Xu, S. & Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 15, 1773–1789 (2013).

    Article  CAS  Google Scholar 

  35. Wang, X. et al. Cofactor NAD(P)H regeneration inspired by heterogeneous. Pathw. Chem. 2, 621–654 (2017).

    CAS  Google Scholar 

  36. Li, L., Martirez, J. M. P. & Carter, E. A. Identifying an alternative hydride transfer pathway for CO2 reduction on CdTe(111) and CuInS2(112) surfaces. Adv. Theory Simul. 5, 2100413 (2022).

    Article  CAS  Google Scholar 

  37. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 6, 476–493 (2022).

    Article  CAS  Google Scholar 

  38. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. 122, 10599–10650 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Kunnen, K., Nikonov, G. & Yunnikova, L. 1,3-Dimethyl-2-phenylbenzimidazoline. in Encyclopedia of Reagents for Organic Synthethis 1–3 (Wiley, 2014).

  40. Zhu, X.-Q., Zhang, M.-T., Yu, A., Wang, C.-H. & Cheng, J.-P. Hydride, hydrogen atom, proton and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile. J. Am. Chem. Soc. 130, 2501–2516 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Purwanto Deshpande, R. M., Chaudhari, R. V. & Delmas, H. Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures. J. Chem. Eng. Data 41, 1414–1417 (1996).

    Article  Google Scholar 

  42. Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Article  CAS  Google Scholar 

  43. Naab, B. D. et al. Effective solution- and vacuum-processed n-doping by dimers of benzimidazoline radicals. Adv. Mater. 26, 4268–4272 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Tanner, D. D. & Chen, J. J. On the mechanism of the reduction of α-halo ketones by 1,3-dimethyl-2-phenylbenzimidazoline. Reduction by a SET (single electron transfer)-hydrogen atom abstraction chain mechanism. J. Org. Chem. 54, 3842–3846 (1989).

    Article  CAS  Google Scholar 

  45. Barrett, S. M., Pitman, C. L., Walden, A. G. & Miller, A. J. M. Photoswitchable hydride transfer from iridium to 1-methylnicotinamide rationalized by thermochemical cycles. J. Am. Chem. Soc. 136, 14718–14721 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Christmann, K. Interaction of hydrogen with solid surfaces. Surf. Sci. Rep. 9, 1–163 (1988).

    Article  Google Scholar 

  47. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Noh, H. & Mayer, J. M. Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes. Chem. 8, 3324–3345 (2022).

  49. Tang, B. Y., Bisbey, R. P., Lodaya, K. M., Toh, W. L. & Surendranath, Y. Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis. Nat. Catal. https://doi.org/10.1038/s41929-023-00943-2 (2022).

  50. Computational studies have predicted a range of ~80 kcal mol−1 for tetra-substituted borohydrides: Heiden, Z. M. & Lathem, A. P. Establishing the hydride donor abilities of main group hydrides. Organometallics 34, 1818–1827 (2015).

  51. Ertem, M. Z., Konezny, S. J., Araujo, C. M. & Batista, V. S. Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J. Phys. Chem. Lett. 4, 745–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Kil, H. J. & Lee, I.-S. H. Primary kinetic isotope effects on hydride transfer from heterocyclic compounds to NAD+ analogues. J. Phys. Chem. A 113, 10704–10709 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Shen, G.-B. et al. Prediction of kinetic isotope effects for various hydride transfer reactions using a new kinetic model. J. Phys. Chem. A 120, 1779–1799 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Jackson, M. N. & Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 138, 3228–3234 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  56. Ledezma-Yanez, I. & Koper, M. T. M. Influence of water on the hydrogen evolution reaction on a gold electrode in acetonitrile solution. J. Electroanal. Chem. 793, 18–24 (2017).

    Article  CAS  Google Scholar 

  57. Mikolajczyk, T., Luba, M., Pierozynski, B. & Smoczynski, L. A detrimental effect of acetonitrile on the kinetics of underpotentially deposited hydrogen and hydrogen evolution reaction, examined on Pt electrode in H2SO4 and NaOH solutions. Catalysts 10, 625 (2020).

    Article  CAS  Google Scholar 

  58. Barrette, W. C. & Sawyer, D. T. Determination of dissolved hydrogen and effects of media and electrode materials on the electrochemical oxidation of molecular hydrogen. Anal. Chem. 56, 653–657 (1984).

    Article  CAS  Google Scholar 

  59. Suárez-Herrera, M. F., Costa-Figueiredo, M. & Feliu, J. M. Voltammetry of basal plane platinum electrodes in acetonitrile electrolytes: effect of the presence of water. Langmuir 28, 5286–5294 (2012).

    Article  PubMed  Google Scholar 

  60. Mayer, J. M. Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc. Chem. Res. 44, 36–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Ludwig, T., Singh, A. R. & Nørskov, J. K. Acetonitrile transition metal interfaces from first principles. J. Phys. Chem. Lett. 11, 9802–9811 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Zidan, R. et al. Aluminium hydride: a reversible material for hydrogen storage. Chem. Commun. 2009, 3717–3719 (2009).

    Article  Google Scholar 

  63. Demirci, U. B. & Miele, P. Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications. Energy Environ. Sci. 2, 627–637 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge A. Radosevich for fruitful discussions. We thank the entire Surendranath laboratory for their support and scientific discussions, with particular acknowledgements to D. Harraz, M. Hülsey and J. Ryu for reviewing the paper and H. W. Chung for proofreading and reproducing the data in Fig. 3. This work was supported primarily by the Air Force Office of Scientific Research (AFOSR) under award no. FA9550-18-1-0420. H.-X.W. acknowledges generous support from the Croucher Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.-X.W. and Y.S. conceived the research and developed experiments. H.-X.W. conducted the majority of the experiments. W.L.T. and B.Y.T. contributed to experimental design and data analysis. H.-X.W. and Y.S. wrote the paper, with input from all authors.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Victor Mougel and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–25, Tables 1 and 2, note and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HX., Toh, W.L., Tang, B.Y. et al. Metal surfaces catalyse polarization-dependent hydride transfer from H2. Nat Catal 6, 351–362 (2023). https://doi.org/10.1038/s41929-023-00944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00944-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing