Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation

Abstract

The electroreduction of CO2 has recently achieved notable progress in the formation of C2 products such as ethylene and ethanol. However, the direct synthesis of C3 products is considerably limited by the C2–C1 coupling reaction and the faradaic efficiency has remained low. Here we present a supersaturation strategy for the electrosynthesis of 2-propanol from CO2 in highly carbonated electrolytes. By controlling the CO2 concentration above the saturation limit, we have developed a co-electrodeposition method with suppressed galvanic replacement to obtain a CuAg alloy catalyst. In supersaturated conditions, the alloy achieved high performance for the production of 2-propanol with a faradaic efficiency of 56.7% and at a specific current density of 59.3 mA cm−2. Our investigations revealed that the presence of dispersed Ag atoms in Cu weakens the surface binding of intermediates in the middle position of the alkyl chain and strengthens the C–O bonds, which favours the formation of 2-propanol over 1-propanol.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Operando deposition and structure characterization of CuAg bimetallic catalysts.
Fig. 2: Surface facet and coordination environment characterization of CuAg bimetallic catalysts.
Fig. 3: CO2RR performance in an H-cell under atmospheric pressure CO2-supersaturated electrolyte.
Fig. 4: CO2RR activity maps and the stability measurement.
Fig. 5: Investigations of the CO2 reduction reaction mechanism using ex situ and operando spectroscopy.
Fig. 6: Theoretical calculations of the C–C coupling and the formation of 2-propanol.
Fig. 7: CO2RR performance in high-pressure electrolyser under elevated CO2 concentration.
Fig. 8: CO2RR stability measurement and quantity and formation rate of 2-propanol.

Data availability

All data are available in the public Figshare repository (https://doi.org/10.6084/m9.figshare.22002014.v1) or from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

All code used within the Article is available in the public Figshare repository (https://doi.org/10.6084/m9.figshare.22083551.v1) or from the corresponding author upon reasonable request.

References

  1. Qiao, J. L., Liu, Y. Y., Hong, F. & Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang, Z. Y., Li, Y. G., Boes, J., Wang, Y. & Sargent, E. H. CO2 electrocatalyst design using graph theory. Preprint at https://doi.org/10.21203/rs.3.rs-66715/v1, (2020).

  4. Raaijman, S. J., Schellekens, M. P., Corbett, P. J. & Koper, M. T. M. High-pressure CO electroreduction at silver produces ethanol and propanol. Angew. Chem. Int. Ed. 60, 21732–21736 (2021).

    Article  CAS  Google Scholar 

  5. Xiao, H., Cheng, T. & Goddard, W. A. III Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  8. Yang, P. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142, 6400–6408 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang, T. T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  CAS  Google Scholar 

  10. Gunathunge, C. M., Ovalle, V. J., Li, Y. W., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).

    Article  CAS  Google Scholar 

  11. Chang, C. J. et al. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 5, 1998–2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vasileff, A., Xu, C. C., Jiao, Y., Zheng, Y. & Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018).

    Article  CAS  Google Scholar 

  13. Ting, L. R. L. et al. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020).

    Article  CAS  Google Scholar 

  14. Wang, Y. H. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  CAS  Google Scholar 

  15. Ye, Y. F. et al. Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nat. Commun. 10, 1875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang, C. P. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lv, X. M. et al. Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 10, 2001987 (2020).

    Article  CAS  Google Scholar 

  18. Zhou, B. W. et al. Highly efficient binary copper–iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl Acad. Sci. USA 117, 1330–1338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, J. J., Zou, S. H., Xiao, L. P. & Fan, J. Well-dispersed bimetallic nanoparticles confined in mesoporous metal oxides and their optimized catalytic activity for nitrobenzene hydrogenation. Catal. Sci. Technol. 4, 441–446 (2014).

    Article  CAS  Google Scholar 

  20. Gibbons, B. M. et al. In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32, 1819–1827 (2020).

    Article  CAS  Google Scholar 

  21. de Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  22. Lin, S. C. et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11, 3525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, Z. X. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  CAS  Google Scholar 

  24. Herzog, A. et al. Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem. Int. Ed. 60, 7426–7435 (2021).

    Article  CAS  Google Scholar 

  25. Qi, K. et al. Enhancing the CO2-to-CO conversion from 2D silver nanoprisms via superstructure assembly. ACS Nano 15, 7682–7693 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Li, J. C., Guo, J. Y. & Dai, H. J. Probing dissolved CO2(aq) in aqueous solutions for CO2 electroreduction and storage. Sci. Adv. 8, eabo0399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dutta, A. et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 12 (2020).

    Article  Google Scholar 

  28. Rayer, A. V. et al. Electrochemical carbon dioxide reduction to isopropanol using novel carbonized copper metal organic framework derived electrodes. J. CO2 Util. 39, 101159 (2020).

    Article  CAS  Google Scholar 

  29. Munir, S., Varzeghani, A. R. & Kaya, S. Electrocatalytic reduction of CO2 to produce higher alcohols. Sustain. Energy Fuels 2, 2532–2541 (2018).

    Article  CAS  Google Scholar 

  30. Kim, D. Y., Kley, C. S., Li, Y. F. & Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Nat. Acad. Sci. USA 114, 10560–10565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  CAS  Google Scholar 

  32. Zhuang, T. T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  CAS  Google Scholar 

  33. Ren, D., Fong, J. H. & Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nat. Commun. 9, 925 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu, H., Liu, J. & Yang, B. Promotional role of a cation intermediate complex in C2 formation from electrochemical reduction of CO2 over Cu. ACS Catal. 11, 12336–12343 (2021).

    Article  CAS  Google Scholar 

  35. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  36. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article  CAS  Google Scholar 

  37. Chang, X. X., Malkani, A., Yang, X. & Xu, B. J. Mechanistic insights into electroreductive C–C coupling between CO and acetaldehyde into multicarbon products. J. Am. Chem. Soc. 142, 2975–2983 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  39. Blyholder, G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem. 68, 2772–2777 (1964).

    Article  CAS  Google Scholar 

  40. Li, Y. G. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, J. et al. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Li, F. W. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 12, 3387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schah-Mohammedi, P. et al. Hydrogen/deuterium-isotope effects on NMR chemical shifts and symmetry of homoconjugated hydrogen-bonded ions in polar solution. J. Am. Chem. Soc. 122, 12878–12879 (2000).

    Article  CAS  Google Scholar 

  45. Yang, B. P. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Cao, X. Y. et al. In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods 5, 2100700 (2021).

    Article  CAS  Google Scholar 

  47. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Pablo-García, S. et al. Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).

    Article  Google Scholar 

  49. Santatiwongchai, J., Faungnawakij, K. & Hirunsit, P. Comprehensive mechanism of CO2 electroreduction toward ethylene and ethanol: the solvent effect from explicit water–Cu(100) interface models. ACS Catal. 11, 9688–9701 (2021).

    Article  CAS  Google Scholar 

  50. Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018).

    Article  CAS  Google Scholar 

  51. Vavra, J., Shen, T. H., Stoian, D., Tileli, V. & Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60, 1347–1354 (2020).

    Article  Google Scholar 

  52. Ramdin, M. et al. High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes. Ind. Eng. Chem. Res. 58, 1834–1847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards, J. P. et al. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Appl. Energy 261, 114305 (2020).

    Article  CAS  Google Scholar 

  54. Shaughnessy, C. I. et al. Intensified electrocatalytic CO2 conversion in pressure-tunable CO2-expanded electrolytes. ChemSusChem 12, 3761–3768 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017).

    Article  CAS  Google Scholar 

  56. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qi, K. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Akemann, W. & Otto, A. Vibrational modes of CO adsorbed on disordered copper films. J. Raman Spectrosc. 22, 797–803 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.V., K.Q. and H.W. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 804320). This work was also supported by the Laboratoire d’Excellence sur la Chimie des Systèmes Moléculaires et Interfaciaux (LabEx CheMISyst). K.Q. and Y.Z. acknowledge financial support from the China Postdoctoral Science Foundation (2018M633127) and the Natural Science Foundation of Guangdong Province (2018A030310602). L.L. acknowledges funding from the Andalusian regional government (FEDER-UCA-18-106613), the European Union’s Horizon 2020 research and innovation programme (823717-ESTEEM3) and the Spanish Ministerio de Economia y Competitividad (PID2019-107578GA-I00). X.C. acknowledges funding from the National Natural Science Foundation of China (grant nos. 12034002 and 22279044). We thank the SOLEIL Synchrotron and A. Zitolo for allocating beamtime at beamline Samba within proposal number 20200732. We thank E. Oliviero and F. Godiard from the University of Montpellier for their help with the TEM analysis. P. Montels and D. Valenza are acknowledged for their technical support. We thank X. Tao from the University of Extremadura for the MATLAB coding. Part of the S/TEM investigations was performed at the National Facility ELECMI ICTS (‘Division de Microscopia Electronica’, Universidad de Cadiz, DME-UCA). This work was granted access to the HPC resources of IDRIS under the allocation 2021-2022-A0110913046 made by GENCI.

Author information

Authors and Affiliations

Authors

Contributions

D.V. and K.Q. designed and directed the research. K.Q., Y.Z., H.W. and Y.Z. synthesized the materials and performed the materials property characterization. N.O., W.W. and J.L. carried out and analysed the DFT calculations. E.P. and C.S. carried out the liquid NMR spectroscopy measurements. L.L., X.C. and Y.W. performed the TEM characterization and analysed the data. K.Q. and D.V. wrote the manuscript. K.Q., J.L., G.J., J.W., J.M. and J.F. performed the hXAS measurements and fitting. D.V. supervised the project and established the final version of the paper. All authors contributed to the manuscript and have approved the final version of the manuscript.

Corresponding author

Correspondence to Damien Voiry.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hao Ming Chen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–68, tables 1–18 and notes 1–41.

Supplementary Code 1

MATLAB code for calculating the CO2 species in the electrolyte under different pressures.

Supplementary Data

DFT coordinates.

Source data

Source Data Fig. 1

Source data of Fig. 1a–d.

Source Data Fig. 2

Source data of Fig. 2c–e.

Source Data Fig. 3

Source data of Fig. 3a–d.

Source Data Fig. 4

Source data of Fig. 4a–d, f and g.

Source Data Fig. 5

Source data of Fig. 5b–f.

Source Data Fig. 6

Source data of Fig. 6c,d.

Source Data Fig. 7

Source data of Fig. 7a–c.

Source Data Fig. 8

Source data of Fig. 8a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, K., Zhang, Y., Onofrio, N. et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat Catal 6, 319–331 (2023). https://doi.org/10.1038/s41929-023-00938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00938-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing