Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing

Abstract

The group I self-splicing introns, like other RNAs and RNA–protein complexes, undergo multiple conformational changes in completing two transesterification reactions that cleave the intron and ligate the exons, but the detailed mechanism remains largely unknown. Here we use cryogenic electron microscopy to reveal six conformations associated with Tetrahymena intron self-splicing at 2.84–3.73 Å resolution directly following transcription, in which the RNAs can fold and splice cotranscriptionally. We identify two states with the dynamically undocked P1 helix in addition to the P1 docked conformation positioned for the first step, and three states associated with the second step, with one state carrying an unforeseen pseudoknotted structure collectively formed by the 5′-exon, 5′-intron and 3′-exon, providing an example of exons modulating splicing activity that is conserved among group IC1 introns. Translocations of nucleotides are observed in helix docking and intron splicing, whereas identification of metal ions validates the general two-metal-ion-splicing mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conformations of Tetrahymena intron in the second step of splicing.
Fig. 2: Conformations of Tetrahymena intron in the first step of splicing.
Fig. 3: Modulation of P1 docking register and intron-splicing reaction.
Fig. 4: Metal ions in the catalytic sites in the second step of splicing.
Fig. 5: Schematic view of Tetrahymena group I intron self-splicing dynamics.

Similar content being viewed by others

Data availability

The cryo-EM maps and associated atomic coordinate models of Tetrahymena group I introns have been deposited in the wwPDB OneDep System under EMD accession codes EMD-33134 and 7XD3 for relaxed pre-Tet-S1; EMD-33135 and 7XD4 for intermediate pre-Tet-S1; EMD-33136 and 7XD5 for Tet-S2a; EMD-33137 and 7XD6 for Tet-S2b; EMD-33138 and 7XD7 for pre-Tet-C; EMD-34670 and 8HD6 for relaxed pre-TetG264A-S1; EMD-34671 and 8HD7 for intermediate pre-TetG264A-S1; and EMD-35223 and 8I7N for TetG264A-S1, respectively. Full-length WT and mutated Tetrahymena intron sequences were used according to NCBI (GenBank, no. JN547815.1). Raw data for sequence and structure conservation analyses are included in Supplementary Data 1. All other data are available from the authors on reasonable request. Source data are provided with this paper.

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, J., Tsai, A., O’Leary, S. E., Petrov, A. & Puglisi, J. D. Unraveling the dynamics of ribosome translocation. Curr. Opin. Struct. Biol. 22, 804–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Will, C. L. & Lührmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garst, A. D., Edwards, A. L. & Batey, R. T. Riboswitches: structures and mechanisms. Cold Spring Harb. Perspect. Biol. 3, a003533 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H. & Keane, S. C. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. Wiley Interdiscip. Rev. RNA 10, e1541 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, J. & Ferre-D’Amare, A. R. New molecular engineering approaches for crystallographic studies of large RNAs. Curr. Opin. Struct. Biol. 26, 9–15 (2014).

    Article  PubMed  Google Scholar 

  8. Larsen, K. P., Choi, J., Prabhakar, A., Puglisi, E. V. & Puglisi, J. D. Relating structure and dynamics in RNA biology. Cold Spring Harb. Perspect. Biol. 11, a032474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsai, M.-D., Wu, W.-J. & Ho, M.-C. Enzymology and dynamics by cryogenic electron microscopy. Annu. Rev. Biophys. 51, 19–38 (2022).

    Article  PubMed  Google Scholar 

  10. Murata, K. & Wolf, M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimic. Biophys. Acta Gen. Subj. 1862, 324–334 (2018).

    Article  CAS  Google Scholar 

  11. Liao, HstauY., Hashem, Y. & Frank, J. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cry-electron microscopy. Structure 23, 1129–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loveland, A. B., Demo, G., Grigorieff, N. & Korostelev, A. A. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tholen, J., Razew, M., Weis, F. & Galej Wojciech, P. Structural basis of branch site recognition by the human spliceosome. Science 375, 50–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, H., Jia, X., Zhang, K. & Su, Z. Cryo-EM advances in RNA structure determination. Signal Transduct. Target Ther. 7, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Cech, T. R., Zaug, A. J. & Grabowski, P. J. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27, 487–496 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J.-F., Downs, W. D. & Cech, T. R. Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260, 504–508 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hougland, J., Piccirilli, J. A., Forconi, M., Lee, J. & Herschlag, D. in The RNA World 3rd edn. How the group I intron works: a case study of RNA structure and function (eds Gesteland, R. F. et al.) 133–205 (Cold Spring Harbor Laboratory Press, 2006); https://doi.org/10.1101/087969739.43.133 (2006).

  20. Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004).

    CAS  PubMed  Google Scholar 

  21. Been, M. D. & Cech, T. R. Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence. Cell 50, 951–961 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Zaug, A. J. & Cech, T. R. The intervening sequence RNA of Tetrahymena is an enzyme. Science 231, 470–475 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Szostak, J. W. Enzymatic activity of the conserved core of a group I self-splicing intron. Nature 322, 83–86 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Cech, T. R. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4, a006742 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Golden, B. L., Gooding, A. R., Podell, E. R. & Cech, T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Su, Z. et al. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature 596, 603–607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cate, J. H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Juneau, K., Podell, E., Harrington, D. J. & Cech, T. R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA–solvent interactions. Structure 9, 221–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Szewczak, A. A., Ortoleva-Donnelly, L., Ryder, S. P., Moncoeur, E. & Strobel, S. A. A minor groove RNA triple helix within the catalytic core of a group I intron. Nat. Struct. Biol. 5, 1037–1042 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Szewczak, A. A. et al. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site. Proc. Natl Acad. Sci. USA 96, 11183–11188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herschlag, D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31, 1386–1399 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Young, B., Herschlag, D. & Cech, T. R. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell 67, 1007–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Shi, X., Solomatin, S. V. & Herschlag, D. A role for a single-stranded junction in RNA binding and specificity by the Tetrahymena group I ribozyme. J. Am. Chem. Soc. 134, 1910–1913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shan, S. O. & Herschlag, D. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. RNA 6, 795–813 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forconi, M., Piccirilli, J. A. & Herschlag, D. Modulation of individual steps in group I intron catalysis by a peripheral metal ion. RNA 13, 1656–1667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stahley, M. R. & Strobel, S. A. Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309, 1587–1590 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shan, S.-o, Yoshida, A., Sun, S., Piccirilli, J. A. & Herschlag, D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc. Natl Acad. Sci. USA 96, 12299–12304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanna, M. & Szostak, J. W. Suppression of mutations in the core of the Tetrahymena ribozyme by spermidine, ethanol and by substrate stabilization. Nucleic Acids Res. 22, 5326–5331 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heilman-Miller, S. L. & Woodson, S. A. Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9, 722–733 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inoue, T., Sullivan, F. X. & Cech, T. R. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing. J. Mol. Biol. 189, 143–165 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Joyce, G. F., Horst, G. V. D. & Inoue, T. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5. Nucleic Acids Res. 17, 7879–7889 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grabow, W. W., Zhuang, Z., Swank, Z. N., Shea, J.-E. & Jaeger, L. The right angle (RA) motif: a prevalent ribosomal RNA structural pattern found in group I introns. J. Mol. Biol. 424, 54–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lehnert, V., Jaeger, L., Michele, F. & Westhof, E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Watson, Z. L. et al. Structure of the bacterial ribosome at 2 Å resolution. eLife 9, e60482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Woodson, S. A. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS. Nucleic Acids Res. 20, 4027–4032 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woodson, S. A. & Cech, T. R. Alternative secondary structures in the 5′ exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry 30, 2042–2050 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Jaeger, L., Westhof, E. & Michel, F. Function of a pseudoknot in the suppression of an alternative splicing event in a group I intron. Biochimie 78, 466–473 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Michel, F. et al. Activation of the catalytic core of a group I intron by a remote 3′ splice junction. Genes Dev. 6, 1373–1385 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Hagen, M. & Cech, T. R. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells. EMBO J. 18, 6491–6500 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roman, J., Rubin, M. N. & Woodson, S. A. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. RNA 5, 1–13 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boniecki, M. J. et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 44, e63 (2016).

    Article  PubMed  Google Scholar 

  55. Rook, M. S., Treiber, D. K. & Williamson, J. R. An optimal Mg(2+) concentration for kinetic folding of the Tetrahymena ribozyme. Proc. Natl Acad. Sci. USA 96, 12471–12476 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan, J., Thirumalai, D. & Woodson, S. A. Magnesium-dependent folding of self-splicing RNA: exploring the link between cooperativity, thermodynamics, and kinetics. Proc. Natl Acad. Sci. USA 96, 6149–6154 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391–395 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Been, M. D. & Perrotta, A. T. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Science 252, 434–437 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Legault, P., Herschlag, D., Celander, D. W. & Cech, T. R. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis. Nucleic Acids Res. 20, 6613–6619 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pyle, A. M., Murphy, F. L. & Cech, T. R. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358, 123–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Strobel, S. A. & Cech, T. R. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32, 13593–13604 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Strobel, S. A. & Cech, T. R. Translocation of an RNA duplex on a ribozyme. Nat. Struct. Biol. 1, 13–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Strobel, S. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H. & Moncoeur, E. Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat. Struct. Biol. 5, 60–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Doudna, J. A., Cormack, B. P. & Szostak, J. W. RNA structure, not sequence, determines the 5′ splice-site specificity of a group I intron. Proc. Natl Acad. Sci. USA 86, 7402–7406 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barfod, E. T. & Cech, T. R. The conserved U.G pair in the 5′ splice site duplex of a group I intron is required in the first but not the second step of self-splicing. Mol. Cell. Biol. 9, 3657–3666 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Herschlag, D. & Cech, T. R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Cech, T. R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Weinstein, L. B., Jones, B. C., Cosstick, R. & Cech, T. R. A second catalytic metal ion in group I ribozyme. Nature 388, 805–808 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12, 82–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Narlikar, G. J., Gopalakrishnan, V., McConnell, T. S., Usman, N. & Herschlag, D. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization. Proc. Natl Acad. Sci. USA 92, 3668 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karbstein, K., Carroll, K. S. & Herschlag, D. Probing the Tetrahymena group I ribozyme reaction in both directions. Biochemistry 41, 11171–11183 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Russell, R., Millett, I. S., Doniach, S. & Herschlag, D. Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat. Struct. Biol. 7, 367–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Russell, R. et al. Rapid compaction during RNA folding. Proc. Natl Acad. Sci. USA 99, 4266–4271 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Das, R. et al. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J. Mol. Biol. 332, 311–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Kwok, L. W. et al. Concordant exploration of the kinetics of RNA folding from global and local perspectives. J. Mol. Biol. 355, 282–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frederiksen, J. K., Li, N. S., Das, R., Herschlag, D. & Piccirilli, J. A. Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding. RNA 18, 1123–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Strauss-Soukup, J. K. & Strobel, S. A. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. J. Mol. Biol. 302, 339–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Ortoleva-Donnelly, L., Szewczak, A. A., Gutell, R. R. & Strobel, S. A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498–519 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kao, C., Zheng, M. & Rüdisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Higuchi, R., Krummel, B. & Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kladwang, W., Hum, J. & Das, R. Ultraviolet shadowing of RNA can cause significant chemical damage in seconds. Sci. Rep. 2, 517 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife https://doi.org/10.7554/eLife.42166 (2018).

  90. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 1–31 (2002).

    Article  Google Scholar 

  97. Zhou, Y. et al. GISSD: group I intron sequence and structure database. Nucleic Acids Res. 36, D31–D37 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. N. Sengupta and D. Herschlag for helpful discussions. Cryo-EM data were collected at the SKLB West China Cryo-EM Centre (Sichuan University) and the Cryo-EM Centre at the Southern University of Science and Technology, and processed at SKLB Duyu High Performance Computing Centre at Sichuan University. This work was supported by the Ministry of Science and Technology of China (nos. MoST 2022YFC2303700 and 2021YFA1301900), the Natural Science Foundation of China (nos. NSFC 32222040 and 32070049) and Sichuan University start-up funding (no. 20822041D4057 to Z.S.) J.M.B., E.F.B. and S.M. were supported by the Polish National Science Centre (nos. NCN 2017/26/A/NZ1/01083 and 2021/43/D/NZ1/03360). E.F.B. was supported by EMBO (no. ALTF 525-2022). Computational resources for SimRNA simulations were provided by the Poznań Supercomputing and Networking Centre at the Institute of Bioorganic Chemistry, Polish Academy of Sciences through the Polish Grid Infrastructure (grant: plgsimcryox).

Author information

Authors and Affiliations

Authors

Contributions

Z.S. conceived the project. C.Z. and J.X. prepared RNA samples and performed electrophoresis. X.L. and X.J. analysed gel electrophoresis results. G.J., C.Z. and J.X. collected cryo-EM data. B.L. processed cryo-EM data. B.L., J.M.B., S.M. and Z.S. built, refined and validated atomic coordinate models. L.J., L.L. and E.F.B. performed sequence and structure conservation analysis. Z.S., H.D. and X.W. prepared the manuscript, with contribitions from all authors.

Corresponding author

Correspondence to Zhaoming Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM workflow of Tetrahymena intron self-splicing from transcription, related to Fig. 1.

(a) Denatured gel analysis of transcription mixture showed all intermediate and final self-spliced products, representative of three independent experiments. (b) Cryo-EM single-particle workflow yielded three conformations corresponding to Tet-S2a, Tet-S2b and pre-Tet-C states, coloured according to local resolution maps with angular distribution and FSC curves indicating resolutions according to the 0.143 cutoff.

Source data

Extended Data Fig. 2 Cryo-EM density in the catalytic site and different J1/2 conformations, related to Fig. 1.

(a) Superposition of J1/2 in different states reveals conformational changes. (b) Superposition of all conformations with previous apo L-21 ScaI ribozyme reveals almost identical global architecture and apparent conformational changes of P1/P1′ helix. IGS of apo L-21 ScaI ribozyme, P1 helix of relaxed pre-Tet-S1 and P1′ helix of pre-Tet-C are in the same relaxed position. (c) nucleotides of J1/2 are stacked in pre-Tet-C at 4.0σ threshold. (d-e) Cryo-EM density connectivity of Tet-S2a (d) and Tet-S2b (e) at 3.0σ and 4.0σ threshold reveals connection of ωG with u(+1) in 3′-exon and cleaved 5′-exon, indicating that these conformations are prior to the second step of splicing.

Extended Data Fig. 3 Spermidine binding in Tetrahymena intron and 70S ribosome, related to Fig. 1m.

(a) Spermidine observed in Tet-S2b. (b) Electrostatic potential map of the spermidine and surrounding area in Tet-S2b. (c) Spermidine observed in 70S ribosome. (d) Electrostatic potential map of the spermidine and surrounding area in 70S ribosome. Black dashed line indicates hydrogen bond.

Extended Data Fig. 4 Splicing activity of WT and mutated Tetrahymena introns, related to Fig. 1F-1G.

(a-d) Gel electrophoreses of splicing reactions of WT (a), mutant 1 with disrupted P0 (b), mutant 2 with disrupted P0′ (c), and mutant 3 with disrupted P0 and P0′ (d). (e-f) Quantifications of the first (e, data size n = 252), and second (f, data size n = 252), splicing reaction product fractions over time reveal increased rate of second step of splicing for mutant 1 and 3. The fractions of each band in the WT and mutants were quantified by Bio-Rad Image Lab software. Curves of the first and second splicing reaction are fit to the one-phase association model \(Y = Y_0 + (Plateau - Y_0) \ast (1 - exp( - K \ast x))\) by GraphPad Prism 7.0. The value of plateau has been indicated. Data are presented as mean values ± standard deviation (SD) from three independent experiments, n = 3.

Source data

Extended Data Fig. 5 Sequence and structure conservation analyses of the Tetrahymena 5′-exon, 5′-intron and 3′-exon that forms the novel pseudoknot structure.

The conservation analyses of the novel pseudoknot region were performed against a library of 310 group IC1 introns of rRNAs. The raw data of the sequence and structure conservation analysis is in Supplementary Data 1.

Extended Data Fig. 6 Cryo-EM workflow of Tetrahymena intron before self-splicing.

(a) Denatured gel analysis of transcription mixture showed inhibited self-splicing, representative of three independent experiments. (b) Cryo-EM single-particle workflow yielded three conformations, two of which corresponded to relaxed and intermediate pre-Tet-S1, and one with flexible single-stranded 5′-exon and 5′-intron since no P1 density was observed. All maps are coloured according to local resolution maps with angular distribution and FSC curves indicating resolutions according to the 0.143 cutoff.

Source data

Extended Data Fig. 7 Cryo-EM workflow of Tetrahymena intron G264A mutation self-splicing from transcription, related to Fig. 2.

(a) Denatured gel analysis of transcription mixture showed all intermediate and final self-spliced products, representative of three independent experiments. (b) Cryo-EM single-particle workflow yielded three conformations corresponding to relaxed and intermediate pre-TetG264A-S1, and docked TetG264A-S1 states, coloured according to local resolution maps with angular distribution and FSC curves indicating resolutions according to the 0.143 cutoff.

Source data

Extended Data Fig. 8 Superposition reveals that relaxed and intermediate conformations of pre-Tet-S1 and pre-TetG264A-S1 are identical, related to Fig. 2a-b.

(a) Cryo-EM maps and model comparisons of the relaxed pre-Tet-S1 (green) and pre-TetG264A-S1 (pink). (b) Cryo-EM maps and model comparisons of the relaxed pre-Tet-S1 (grey) and pre-TetG264A-S1 (cyan).

Extended Data Fig. 9 The metal ion identification of all constructs associated to the first splicing reaction and comparison with Tet-S2a.

(a-e) Metal ions identifications of (a) relaxed pre-TetG264A-S1 (pink), (b) intermediate pre-TetG264A-S1 (cyan), (c) TetG264A-S1 (dark green), (d) relaxed pre-Tet-S1 (green) and (e) intermediate pre-Tet-S1 (grey) compared to Tet-S2a (purple). The missing ions are marked in red.

Extended Data Fig. 10 Cryo-EM maps and models show metal ion compositions of different states in Tetrahymena group I intron splicing, Related to Fig. 4.

(a) Relaxed pre-TetG264A-S1 at 1.0σ threshold. (b) Intermediate pre-TetG264A-S1 at 1.0σ threshold. (c) TetG264A-S1 at 1.0σ threshold. (d) Tet-S2a at 1.5σ threshold. (e) Tet-S2b at 2.0σ threshold. (f) Pre-Tet-C at 1.0σ threshold without applying the local resolution low-pass filter.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Raw data from sequence and structure conservation analyses of the novel pseudoknotted structure formed by exons and the 5′-intron of group IC1 introns.

Video demonstration of Tetrahymena intron self-splicing process.

Source data

Source Data Extended Data Figs. 1, 4, 6 and 7.

Unprocessed gels of Extended Data Figs. 1a, 4a–d, 6a and 7a.

Source Data Extended Data Fig. 4

Statistical Source Data for Extended Data Fig. 4e–f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Zhang, C., Ling, X. et al. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat Catal 6, 298–309 (2023). https://doi.org/10.1038/s41929-023-00934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00934-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing