Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis

Abstract

Two-electron oxygen reduction offers a route to H2O2 that is potentially cost-effective and less energy-intensive than the industrial anthraquinone process. However, the catalytic performance of the highest performing prior heterogeneous electrocatalysts to H2O2 has lain well below the >300 mA cm−2 needed for capital efficiency. Herein, guided by computation, we present a supramolecular approach that utilizes oxygen functional groups in a carbon nanotube substrate that—when coupled with a cobalt phthalocyanine catalyst—improve cobalt phthalocyanine adsorption, preventing agglomeration; and that further generate an electron-deficient Co centre whose interaction with the key H2O2 intermediate is tuned towards optimality. The catalysts exhibit an overpotential of 280 mV at 300 mA cm−2 with turnover frequencies over 50 s−1 in a neutral medium, an order of magnitude higher activity compared with the highest performing prior H2O2 electrocatalysts. This performance is sustained for over 100 h of operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational studies of electronically tuned H2O2 molecular electrocatalysts.
Fig. 2: The synthesis and structural characterization of CoPc-CNT(O).
Fig. 3: Electrochemical characterization of CoPc-CNT(O).
Fig. 4: H2O2 production performance in flow cells.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are provided with the paper and its Supplementary Information files. Geometries are also available at https://github.com/hitarth64/CoPc-CNT. Further requests about data can be addressed to the corresponding authors. Source data are provided with this paper.

References

  1. Hydrogen Peroxide (HP): 2015 World Market Outlook (Merchant Research and Consulting, 2015).

  2. Siahrostami, S. et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020).

    Article  CAS  Google Scholar 

  3. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  4. Jung, E. at al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Jung, E., Shin, H., Hooch Antink, W., Sung, Y. E. & Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design. ACS Energy Lett. 5, 1881–1892 (2020).

    Article  CAS  Google Scholar 

  6. Zhang, X. L. et al. Strongly coupled cobalt diselenide monolayers for selective electrocatalytic oxygen reduction to H2O2 under acidic conditions. Angew. Chem. Int. Ed. 60, 2–11 (2021).

    Article  Google Scholar 

  7. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Han, Z., Horak, K. T., Lee, H. B. & Agapie, T. Tetranuclear Manganese Models of the OEC displaying hydrogen bonding interactions: Application to electrocatalytic water oxidation to hydrogen peroxide. J. Am. Chem. Soc. 139, 9108–9111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costentin, C., Drouet, S., Robert, M. & Saveant, J. M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Buss, J. A. & Agapie, T. Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site. Nature 529, 72–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, C. et al. Intrinsic activity of metal metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142, 21861–21871 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y. H., Pegis, M. L., Mayer, J. M. & Stahl, S. S. Molecular cobalt catalyst for O2 reduction: Low-overpotential production of H2O2 and comparison with Iron-based catalysts. J. Am. Chem. Soc. 139, 16458–16461 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Honda, T., Kojima, T. & Fukuzumi, S. Proton-coupled electron-transfer reduction of dioxygen catalyzed by a saddle-distorted cobalt phthalocyanine. J. Am. Chem. Soc. 134, 4196–4206 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Severy, L. et al. Immobilization of molecular catalysts on electrode surfaces using host-guest interactions. Nat. Chem. 13, 523–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, M., Ye, R., Jin, K., Lazouski, N. & Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018).

    Article  CAS  Google Scholar 

  17. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Bok, J. et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J. Am. Chem. Soc. 143, 5386–6395 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    Article  CAS  Google Scholar 

  26. Guo, D. et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gu, J., Hsu, C. S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  30. Chen, S. et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021).

    Article  CAS  Google Scholar 

  31. Cao, P. et al. Durable and selective electrochemical H2O2 synthesis under a large current enabled by the cathode with highly hydrophobic three-phase architecture. ACS Catal. 11, 13797–13808 (2021).

    Article  CAS  Google Scholar 

  32. Zhao, Q. et al. Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co-N-C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021).

    Article  CAS  Google Scholar 

  33. Pan, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  36. Schild, J. et al. Approaching industrially relevant current densities for hydrogen oxidation with a bioinspired molecular catalytic material. J. Am. Chem. Soc. 143, 18150–18158 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, H. et al. Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nat. Commun. 13, 723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mun, Y. et al. Versatile strategy for tuning ORR activity of a single fe-n4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141, 6254–6262 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article  CAS  Google Scholar 

  40. Ramaswamy, N. & Mukerjee, S. Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C. 115, 18015–18026 (2011).

    Article  CAS  Google Scholar 

  41. Blizanac, B. B., Ross, P. N. & Markovic, N. M. Oxygen electroreduction on Ag(1 1 1): The pH effect. Electrochim. Acta 52, 2264–2271 (2007).

    Article  CAS  Google Scholar 

  42. Luna, P. D. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  43. Yu, X. et al. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2, 1610–1622 (2018).

    Article  CAS  Google Scholar 

  44. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article  Google Scholar 

  48. Tkatchenko, A., DiStasio, R. A. Jr., Car, R. & Scheffler, M. Accurate and Efficient Method for Many-Body van der Waals Interactions. Phys. Rev. Lett. 108, 236402 (2012).

    Article  PubMed  Google Scholar 

  49. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  50. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  51. Mathew, K. et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  52. Mathew, K. et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Gas Innovation Fund, the Natural Sciences and Engineering Research Council of Canada, the Natural Resources Canada Clean Growth Program, and the Ontario Research Fund—Research Excellence programme. All DFT computations were performed on the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, the Ontario Research Fund Research Excellence Program, and the University of Toronto. This work was also supported by the Research Center Program of the IBS (IBS-R006-A2, Y.-E.S; IBS-R006-D1, T.H) in Korea.

Author information

Authors and Affiliations

Authors

Contributions

E.H.S., Y.-E.S. and T.H. supervised the project. B.-H.L. conceived the idea. B.-H.L., H.S., A.S.R. and H.C. designed and performed the experiments. H.C. with the help of P.O. carried out DFT calculations. R.D., I.G., G.L., S.P., H.S.L., E.S., J.W., J.Z., Z.C. and Y.C. contributed on material synthesis, characterization and electrochemical measurements. R.K.M. and D.S. assisted with electrochemical system design. B.-H.L., H.S., A.S.R., H.C., T.H., Y.-E.S. and E.H.S. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Taeghwan Hyeon, Yung-Eun Sung or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hailiang Wang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figs. 1–37, notes 1–4 and tables 1–3.

Supplementary Data 1

Structural data.

Source data

Source Data Fig. 1

Source data fig. 1.

Source Data Fig. 3

Source data fig. 3.

Source Data Fig. 4

Source data fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BH., Shin, H., Rasouli, A.S. et al. Supramolecular tuning of supported metal phthalocyanine catalysts for hydrogen peroxide electrosynthesis. Nat Catal 6, 234–243 (2023). https://doi.org/10.1038/s41929-023-00924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00924-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing