Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%

Abstract

The wide deployment of electrocatalytic hydrogenation may be hindered by intrinsic limitations, including substrate solubility and difficult separation of the products from the electrolyte. The use of palladium membrane electrodes can overcome the aforementioned limitations by physically separating the formation of reactive hydrogen atoms from the hydrogenation of unsaturated organic substrates. Here, by taking advantage of the low-potential oxidation of formaldehyde on a palladium membrane anode to produce hydrogen that can permeate through the membrane electrode, we demonstrate that electrocatalytic dual hydrogenation of unsaturated dicarboxylic acids is possible when another palladium membrane electrode is also adopted as the cathode. Such a design enables the electrocatalytic hydrogenation of the same substrate at both the anode and cathode in two separated chambers spatially isolated from the electrochemical cell with a theoretical maximum Faradaic efficiency of 200%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of three different electrocatalytic hydrogenation designs.
Fig. 2: Comparison of electrocatalytic H2 production and absorption using Pd electrodes.
Fig. 3: Electrocatalytic dual hydrogenation of maleic acid.
Fig. 4: Electrocatalytic dual hydrogenation under various conditions.
Fig. 5: Versatility of electrocatalytic dual hydrogenation.
Fig. 6: Investigation of the hydrogen source.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article and the Supplementary Information. Further queries about the data can be directed to the corresponding author. Source data are provided with this paper.

References

  1. Augustine, R. L. Catalytic Hydrogenation: Techniques and Applications in Organic Synthesis (Marcel Dekker, 1965).

  2. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Jagadeesh, R. V. et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Cui, X. et al. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nat. Commun. 7, 11326 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Friedfeld, M. R., Zhong, H., Ruck, R. T., Shevlin, M. & Chirik, P. J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 360, 888–893 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Mas-Rosello, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. et al. Dynamic metal–polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Sci. Adv. 6, eabb7369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bondue, C. J., Calle-Vallejo, F., Figueiredo, M. C. & Koper, M. T. M. Structural principles to steer the selectivity of the electrocatalytic reduction of aliphatic ketones on platinum. Nat. Catal. 2, 243–250 (2019).

    Article  CAS  Google Scholar 

  9. Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Gnaim, S. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature 605, 687–695 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Fokin, S. Z. Die Rolle der Metallhydride bei Reduktionsreaktionen und neue Daten zur Erklärung der Frage über die Zusammen-Setzung einiger Fette und Trane. Z. Elektrochem. Angew. Phys. Chem. 12, 749–768 (1906).

    Article  Google Scholar 

  12. Lessard, J. Organic Electrochemistry (eds Hammerich, O. & Speiser, B.) 1658–1664 (CRC, 2015).

  13. Li, T., Cao, Y., He, J. & Berlinguette, C. P. Electrolytic CO2 reduction in tandem with oxidative organic chemistry. ACS Cent. Sci. 3, 778–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. You, B. & Sun, Y. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Sbei, N., Hardwick, T. & Ahmed, N. Green chemistry: electrochemical organic transformations via paired electrolysis. ACS Sustain. Chem. Eng. 9, 6148–6169 (2021).

    Article  CAS  Google Scholar 

  16. Cardoso, D. S. P., Šljukić, B., Santos, D. M. F. & Sequeira, C. A. C. Organic electrosynthesis: from laboratorial practice to industrial applications. Org. Process Res. Dev. 21, 1213–1226 (2017).

    Article  CAS  Google Scholar 

  17. Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. 55–56 (1996).

  18. Iwakura, C., Yoshida, Y. & Inoue, H. A new hydrogenation system of 4-methylstyrene using a palladinized palladium sheet electrode. J. Electroanal. Chem. 431, 43–45 (1997).

    Article  CAS  Google Scholar 

  19. Iwakura, C., Abe, T. & Inoue, H. A new successive system for hydrogenation of styrene using a two-compartment cell separated by a Pd sheet electrode. J. Electrochem. Soc. 143, L71–L73 (1996).

    Article  CAS  Google Scholar 

  20. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  21. Delima, R. S., Sherbo, R. S., Dvorak, D. J., Kurimoto, A. & Berlinguette, C. P. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation. J. Mater. Chem. A 7, 26586–26595 (2019).

    Article  CAS  Google Scholar 

  22. Devanathan, M. A. & Stachurski, Z. The absorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. A 270, 90–102 (1962).

    CAS  Google Scholar 

  23. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Van Den Meerakker, J. E. A. M. On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces. J. Appl. Electrochem. 11, 387–393 (1981).

    Article  CAS  Google Scholar 

  25. Machida, K. & Enyo, M. Formaldehyde electro-oxidation on copper metal and copper-based amorphous alloys in alkaline media. Bull. Chem. Soc. Jpn 58, 2043–2050 (1985).

    Article  CAS  Google Scholar 

  26. Wang, T. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5, 66–73 (2022).

    Article  CAS  Google Scholar 

  27. Trincado, M., Grützmacher, H. & Prechtl, M. H. G. CO2-based hydrogen storage—hydrogen generation from formaldehyde/water. Phys. Sci. Rev. 3, 20170013 (2018).

    Google Scholar 

  28. Wang, C. & Astruc, D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 50, 3437–3484 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Beltowskabrzezinska, M. Electrochemical oxidation of formaldehyde on gold and silver. Electrochim. Acta 30, 1193–1198 (1985).

    Article  CAS  Google Scholar 

  30. Beltowskabrzezinska, M. & Heitbaum, J. On the anodic oxidation of formaldehyde on Pt, Au and Pt/Au-alloy electrodes in alkaline solution. J. Electroanal. Chem. 183, 167–181 (1985).

    Article  CAS  Google Scholar 

  31. Martin, R. J. The mechanism of the Cannizzaro reaction of formaldehyde. Aust. J. Chem. 7, 335–347 (1954).

    Article  CAS  Google Scholar 

  32. Fukai, Y. The Metal–Hydrogen System: Basic Bulk Properties (Springer, 2006).

  33. Holland, T. J. B. & Redfern, S. A. T. Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral. Mag. 61, 65–77 (1997).

    Article  CAS  Google Scholar 

  34. Maeland, A. & Flanagan, T. B. Lattice constants and thermodynamic parameters of the hydrogen–platinum–palladium and deuterium–platinum–palladium systems. J. Phys. Chem. 68, 1419–1426 (1964).

    Article  CAS  Google Scholar 

  35. Benck, J. D., Jackson, A., Young, D., Rettenwander, D. & Chiang, Y.-M. Producing high concentrations of hydrogen in palladium via electrochemical insertion from aqueous and solid electrolytes. Chem. Mater. 31, 4234–4245 (2019).

    Article  CAS  Google Scholar 

  36. Bozell, J. J. & Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s ‘Top 10’ revisited. Green. Chem. 12, 539–554 (2010).

    Article  CAS  Google Scholar 

  37. Wojcieszak, R. et al. Recent developments in maleic acid synthesis from bio-based chemicals. Sustain. Chem. Process. 3, 9 (2015).

    Article  Google Scholar 

  38. Pinazo, J. M., Domine, M. E., Parvulescu, V. & Petru, F. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal. Today 239, 17–24 (2015).

    Article  CAS  Google Scholar 

  39. Suenobu, T., Isaka, Y., Shibata, S. & Fukuzumi, S. Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex. Chem. Commun. 51, 1670–1672 (2015).

    Article  CAS  Google Scholar 

  40. Fetzer, M. N. A., Tavakoli, G., Klein, A. & Prechtl, M. H. G. Ruthenium‐catalyzed E‐selective partial hydrogenation of alkynes under transfer‐hydrogenation conditions using paraformaldehyde as hydrogen source. ChemCatChem 13, 1317–1325 (2021).

    Article  CAS  Google Scholar 

  41. Kurimoto, A. et al. Physical separation of H2 activation from hydrogenation chemistry reveals the specific role of secondary metal catalysts. Angew. Chem. Int. Ed. 60, 11937–11942 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.S. acknowledges the financial support of the National Science Foundation (CHE-1914546 and CHE-2102220), the Herman Frasch Foundation (820-HF17), the Michelman Green, Clean and Sustainable Technology Research Innovation Program, and the University of Cincinnati.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived the idea and supervised the project. G.H. and G.L. performed the experimental work and data analysis. G.H. and Y.S. wrote the manuscript.

Corresponding author

Correspondence to Yujie Sun.

Ethics declarations

Competing interests

Y.S. has filed a provisional patent application related to this manuscript (US patent provisional 63/440,044). All other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Shuangyin Wang, Hongyuan Sheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–45 and ref. 1.

Supplementary Data 1

Source data for the figures in the Supporting Information.

Source data

Source Data Fig. 2

Data used to plot the figures.

Source Data Fig. 3

Data used to plot the figures.

Source Data Fig. 4

Data used to plot the figures.

Source Data Fig. 5

Data used to plot the figures.

Source Data Fig. 6

Data used to plot the figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Li, G. & Sun, Y. Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%. Nat Catal 6, 224–233 (2023). https://doi.org/10.1038/s41929-023-00923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00923-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing