Data science and machine learning have the potential to accelerate the discovery of effective catalysts; however, these approaches are currently held back by the issue of negative results. This Comment highlights the value of negative data by assessing the bottlenecks in data-driven catalysis research and presents a vision for a way forwards.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. npj Comput. Mater. 3, 54 (2017).
Toyao, T. et al. ACS Catal. 10, 2260–2297 (2020).
Nørskov, J. K. et al. J. Phys. Chem. B 108, 17886–17892 (2004).
Hirose, M. et al. Commun. Chem. 2, 50 (2019).
Behler, J. Chem. Rev. 121, 10037–10072 (2021).
Williams, T., McCullough, K. & Lauterbach, J. A. Chem. Mater. 32, 157–165 (2020).
Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. npj Comput. Mater. 5, 83 (2019).
Ling, C. npj Comput. Mater. 8, 33 (2022).
Wulf, C. et al. ChemCatChem 13, 3223–3236 (2021).
Herbet, M.-E., Leonard, J., Santangelo, M. G. & Albaret, L. Learn. Publ. 35, 16–29 (2022).
Nguyen, T. N. et al. ACS Catal. 10, 921–932 (2020).
Jia, X. et al. Nature 573, 251–255 (2019).
Nguyen, T. N. et al. ACS Catal. 11, 1797–1809 (2021).
Strieth-Kalthoff, F. et al. Angew. Chem. Int. Ed. 61, e202204647 (2022).
Raccuglia, P. et al. Nature 533, 73–76 (2016).
Beker, W. et al. J. Am. Chem. Soc. 144, 4819–4827 (2022).
Ryan, K., Lengyel, J. & Shatruk, M. J. Am. Chem. Soc. 140, 10158–10168 (2018).
Young, S. R. et al. J. Appl. Phys. 123, 115303 (2018).
Higgins, S. G., Nogiwa-Valdez, A. A. & Stevens, M. M. Nat. Protoc. 17, 179–189 (2022).
Kaur, H., Pannu, H. S. & Malhi, A. K. ACM Comput. Surv. 52, 79 (2020).
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. J. Artif. Intell. Res. 16, 321–357 (2002).
Mendes, P. S. F., Siradze, S., Pirro, L. & Thybaut, J. W. ChemCatChem 13, 836–850 (2021).
Winther, K. T. et al. Sci. Data 6, 75 (2019).
Fujima, J., Tanaka, Y., Miyazato, I., Takahashi, L. & Takahashi, K. React. Chem. Eng. 5, 903–911 (2020).
Takahashi, L. & Takahashi, K. J. Phys. Chem. Lett. 10, 7482–7491 (2019).
Acknowledgements
We acknowledge funding from the Japan Science and Technology Agency (JST) CREST (grant number JPMJCR17P2). We thank P. Chammingkwan from Japan Advanced Institute of Science and Technology for the graphical design.
Author information
Authors and Affiliations
Contributions
T.T. and K.T. wrote this Comment together.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Catalysis thanks David Linke, Jochen Lauterbach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Taniike, T., Takahashi, K. The value of negative results in data-driven catalysis research. Nat Catal 6, 108–111 (2023). https://doi.org/10.1038/s41929-023-00920-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-023-00920-9