Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging the complexity gap in computational heterogeneous catalysis with machine learning

Abstract

Heterogeneous catalysis underpins a wide variety of industrial processes including energy conversion, chemical manufacturing and environmental remediation. Significant advances in computational modelling towards understanding the nature of active sites and elementary reaction steps have occurred over the past few decades. The complexity gap between theory and experiment, however, remains overwhelming largely due to the limiting length and timescales of ab initio simulations, which severely impede the discovery of high-performance catalytic materials. This Review summarizes recent developments and applications of machine learning to narrow and, optimistically, bridge the gap created by the dynamic, mechanistic and chemostructural complexities inherent to the reactive interfaces of practical relevance. We foresee the prospects and challenges of machine learning for the automated design of sustainable catalytic technologies within a data-centric ecosystem that coevolves with computational and data sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bridging the theory–experiment gap in computational heterogeneous catalysis with machine learning.
Fig. 2: Data-enhanced atomistic thermodynamics for exploring configurational spaces.
Fig. 3: MLMD at extended length and timescales.
Fig. 4: Graph theoretical enumeration of reaction pathways with machine learning.
Fig. 5: Environment-aware microkinetics enabled by machine learning.
Fig. 6: Active machine learning for accelerating catalytic materials discovery.
Fig. 7: Design rules from interpretable machine learning.
Fig. 8: BO strategies to find optimal catalysts.

Similar content being viewed by others

References

  1. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley-VCH, 2007).

  2. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, B. W. J., Xu, L. & Mavrikakis, M. Computational methods in heterogeneous catalysis. Chem. Rev. 121, 1007–1048 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Grajciar, L. et al. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 47, 8307–8348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  6. Beck, A. et al. Following the structure of copper–zinc–alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 4, 488–497 (2021).

    Article  CAS  Google Scholar 

  7. Shi, X. et al. Dynamics of heterogeneous catalytic processes at operando conditions. J. Am. Chem. Soc. Au 1, 2100–2120 (2021).

    CAS  Google Scholar 

  8. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  Google Scholar 

  9. Boudart, M. Electronic chemical potential in chemisorption and catalysis. J. Am. Chem. Soc. 74, 1531–1535 (1952).

    Article  CAS  Google Scholar 

  10. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Article  Google Scholar 

  11. Goldsmith, B. R., Esterhuizen, J., Liu, J.-X., Bartel, C. J. & Sutton, C. Machine learning for heterogeneous catalyst design and discovery. AIChE J. 64, 2311–2323 (2018).

    Article  CAS  Google Scholar 

  12. Schlexer Lamoureux, P. et al. Machine learning for computational heterogeneous catalysis. ChemCatChem 11, 3581–3601 (2019).

    Article  CAS  Google Scholar 

  13. Medford, A. J., Kunz, M. R., Ewing, S. M., Borders, T. & Fushimi, R. R. Extracting knowledge from data through catalysis informatics. ACS Catal. https://doi.org/10.1021/acscatal.8b01708 (2018).

  14. Li, H., Jiao, Y., Davey, K. & Qiao, S. Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202216383 (2022).

  15. Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

    Article  Google Scholar 

  17. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  Google Scholar 

  18. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  PubMed  Google Scholar 

  19. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  CAS  Google Scholar 

  20. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    Article  Google Scholar 

  21. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schütt, K. T. et al. SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. Adv. Neural Inf. Process Syst. 30, 992–1002 (2017).

    Google Scholar 

  23. Artrith, N. & Kolpak, A. M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Y., Guo, Z., Gellman, A. J. & Kitchin, J. R. Simulating segregation in a ternary Cu–Pd–Au alloy with density functional theory, machine learning, and Monte Carlo simulations. J. Phys. Chem. C 126, 1800–1808 (2022).

    Article  CAS  Google Scholar 

  25. Liu, M., Yang, Y. & Kitchin, J. R. Semi-grand canonical Monte Carlo simulation of the acrolein induced surface segregation and aggregation of AgPd with machine learning surrogate models. J. Chem. Phys. 154, 134701 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Li, X.-T., Chen, L., Shang, C. & Liu, Z.-P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 143, 6281–6292 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, S., Huang, S.-D. & Liu, Z.-P. Dynamic coordination of cations and catalytic selectivity on zinc–chromium oxide alloys during syngas conversion. Nat. Catal. 2, 671–677 (2019).

    Article  CAS  Google Scholar 

  28. Yoon, J. et al. Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. Machine Learn. Sci. Technol. https://doi.org/10.1088/2632-2153 (2021).

  29. Chen, Y. et al. A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts. J. Am. Chem. Soc. 143, 20144–20156 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Sun, G. & Sautet, P. Metastable structures in cluster catalysis from first-principles: structural ensemble in reaction conditions and metastability triggered reactivity. J. Am. Chem. Soc. 140, 2812–2820 (2018). Highlights the importance of low-energy metastable structures of a Pt13 cluster with a modified genetic algorithm driven by machine learning potentials.

    Article  CAS  PubMed  Google Scholar 

  31. Paleico, M. L. & Behler, J. Global optimization of copper clusters at the ZnO (\(11\bar10\)) surface using a DFT-based neural network potential and genetic algorithms. J. Chem. Phys. 153, 054704 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Kolsbjerg, E. L., Peterson, A. A. & Hammer, B. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles. Phys. Rev. B 97, 195424 (2018).

    Article  CAS  Google Scholar 

  33. Wang, Y., Su, Y.-Q., Hensen, E. J. M. & Vlachos, D. G. Insights into supported subnanometer catalysts Exposed to CO via Machine-Learning-Enabled Multiscale Modeling. Chem. Mater. 34, 1611–1619 (2022).

    Article  CAS  Google Scholar 

  34. Sumaria, V. & Sautet, P. CO organization at ambient pressure on stepped Pt surfaces: first principles modeling accelerated by neural networks. Chem. Sci. 12, 15543–15555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, B. W. J., Wang, B., Sullivan, M. B., Borgna, A. & Zhang, J. Unraveling the synergistic effect of Re and Cs promoters on ethylene epoxidation over silver catalysts with machine learning-accelerated first-principles simulations. ACS Catal. 12, 2540–2551 (2022). Employs simulated annealing with machine learning potentials to study site structures of promoted Ag(111) with Re, Cs and Cl for ethylene epoxidation.

    Article  CAS  Google Scholar 

  36. Ulissi, Z. W., Singh, A. R., Tsai, C. & Nørskov, J. K. Automated discovery and construction of surface phase diagrams using machine learning. J. Phys. Chem. Lett. 7, 3931–3935 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Lim, J. S. et al. Evolution of metastable structures at bimetallic surfaces from microscopy and machine-learning molecular dynamics. J. Am. Chem. Soc. 142, 15907–15916 (2020). Uncovers atomistic processes of the evolution of a Pd layer on Ag(111) with machine learning molecular dynamics.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, C. et al. Dynamical study of adsorbate-induced restructuring kinetics in bimetallic catalysts using the PdAu(111) model system. J. Am. Chem. Soc. 144, 15132–15142 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Halim, H. H. & Morikawa, Y. Elucidation of Cu–Zn surface alloying on Cu(997) by machine-learning molecular dynamics. ACS Phys. Chem. Au 2, 430–447 (2022).

    Article  CAS  Google Scholar 

  40. Zhen, S. et al. Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction. Angew. Chem. Int. Ed. 61, e202201913 (2022).

    Article  CAS  Google Scholar 

  41. Cheng, D. et al. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat. Commun. 12, 395 (2021). Identifies active sites for C–C coupling by machine learning molecular dynamics simulations of reduction processes of oxide-derived copper catalysts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Phys. Chem. Chem. Phys. 18, 28704–28725 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Quaranta, V., Behler, J. & Hellström, M. Structure and dynamics of the liquid-water/zinc-oxide interface from machine learning potential simulations. J. Phys. Chem. C 123, 1293–1304 (2019).

    Article  CAS  Google Scholar 

  44. Mikkelsen, A. E. G., Schiøtz, J., Vegge, T. & Jacobsen, K. W. Is the water/Pt(111) interface ordered at room temperature? J. Chem. Phys. 155, 224701 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Mikkelsen, A. E. G. et al. Structure and energetics of liquid water-hydroxyl layers on Pt(111). Phys. Chem. Chem. Phys. https://doi.org/10.1039/D2CP00190J (2022).

  46. Rice, P. S., Liu, Z.-P. & Hu, P. Hydrogen coupling on platinum using artificial neural network potentials and DFT. J. Phys. Chem. Lett. 12, 10637–10645 (2021). Employs machine learning molecular dynamics to study active sites of hydrogen evolution at the water/Pt(111) interface.

  47. Pablo-García, S., García-Muela, R., Sabadell-Rendó, A. & López, N. Dimensionality reduction of complex reaction networks in heterogeneous catalysis: from linear‐scaling relationships to statistical learning technique. WIREs Comput. Mol. Sci. 11, e1540 (2021).

    Article  Google Scholar 

  48. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rangarajan, S., Bhan, A. & Daoutidis, P. Language-oriented rule-based reaction network generation and analysis: description of RING. Comput. Chem. Eng. 45, 114–123 (2012).

    Article  CAS  Google Scholar 

  50. Gupta, U. & Vlachos, D. G. Learning chemistry of complex reaction systems via a Python first-principles reaction rule stencil (pReSt) generator. J. Chem. Inf. Model. 61, 3431–3441 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Margraf, J. T. & Reuter, K. Systematic enumeration of elementary reaction steps in surface catalysis. ACS Omega 4, 3370–3379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao, C. W., Allen, J. W., Green, W. H. & West, R. H. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms. Comput. Phys. Commun. 203, 212–225 (2016).

    Article  CAS  Google Scholar 

  53. Susnow, R. G., Dean, A. M., Green, W. H., Peczak, P. & Broadbelt, L. J. Rate-based construction of kinetic models for complex systems. J. Phys. Chem. A 101, 3731–3740 (1997).

    Article  CAS  Google Scholar 

  54. Goldsmith, C. F. & West, R. H. Automatic generation of microkinetic mechanisms for heterogeneous catalysis. J. Phys. Chem. C 121, 9970–9981 (2017).

    Article  CAS  Google Scholar 

  55. Mazeau, E. J., Satpute, P., Blöndal, K., Goldsmith, C. F. & West, R. H. Automated mechanism generation using linear scaling relationships and sensitivity analyses applied to catalytic partial oxidation of methane. ACS Catal. 11, 7114–7125 (2021).

    Article  CAS  Google Scholar 

  56. Lim, J. Y. et al. Machine learning-assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: reaction pathways and multicriteria optimization analyses. Int. J. Energy Res. 46, 6277–6291 (2022).

    Article  CAS  Google Scholar 

  57. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017). Identifies the most likely reaction pathway for syngas conversion on Rh(111) from a multitude of pathways with machine learning.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Deimel, M., Reuter, K. & Andersen, M. Active site representation in first-principles microkinetic models: data-enhanced computational screening for improved methanation catalysts. ACS Catal. 10, 13729–13736 (2020).

    Article  CAS  Google Scholar 

  59. Mou, T., Han, X., Zhu, H. & Xin, H. Machine learning of lateral adsorbate interactions in surface reaction kinetics. Curr. Opin. Chem. Eng. 36, 100825 (2022).

    Article  Google Scholar 

  60. Zhang, X.-J. & Liu, Z.-P. Reaction sampling and reactivity prediction using the stochastic surface walking method. Phys. Chem. Chem. Phys. 17, 2757–2769 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Shi, Y.-F., Kang, P.-L., Shang, C. & Liu, Z.-P. Methanol synthesis from CO2/CO mixture on Cu–Zn catalysts from microkinetics-guided machine learning pathway search. J. Am. Chem. Soc. 144, 13401–13414 (2022). Uses machine learning interatomic potentials for a surrogate potential energy surface of CO2 hydrogenation on Cu and finds the most favourable reaction pathways via stochastic surface walking.

    Article  CAS  PubMed  Google Scholar 

  62. del Cueto, M. et al. New perspectives on CO2–Pt(111) interaction with a high-dimensional neural network potential energy surface. J. Phys. Chem. C 124, 5174–5181 (2020).

    Article  Google Scholar 

  63. Lee, E. M. Y. et al. Neural network sampling of the free energy landscape for nitrogen dissociation on ruthenium. J. Phys. Chem. Lett. 12, 2954–2962 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Hu, C., Zhang, Y. & Jiang, B. Dynamics of H2O Adsorption on Pt(110)-(1 × 2) based on a neural network potential energy surface. J. Phys. Chem. C 124, 23190–23199 (2020).

  65. Calegari Andrade, M. F., Ko, H.-Y., Zhang, L., Car, R. & Selloni, A. Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics. Chem. Sci. 11, 2335–2341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kimari, J. et al. Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusion. Comput. Mater. Sci. 183, 109789 (2020).

    Article  CAS  Google Scholar 

  67. Vignola, E. et al. A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. J. Chem. Phys. 147, 054106 (2017).

    Article  PubMed  Google Scholar 

  68. Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat. Commun. 13, 5788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peng, J. et al. Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nat. Rev. Mater. 7, 991–1009 (2022).

    Article  Google Scholar 

  70. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  CAS  Google Scholar 

  71. Li, Z., Achenie, L. E. K. & Xin, H. An adaptive machine learning strategy for accelerating discovery of perovskite electrocatalysts. ACS Catal. 10, 4377–4384 (2020).

    Article  CAS  Google Scholar 

  72. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). Employs an automated machine learning pipeline with active learning to find active catalysts for CO2 reduction to C2 products.

    Article  CAS  PubMed  Google Scholar 

  73. Van Der, M. Accelerating t-SNE using tree-based algorithm. J. Mach. Learn. Res 15, 3221–3245 (2014).

    Google Scholar 

  74. Liu, F., Yang, S. & Medford, A. J. Scalable approach to high coverages on oxides via iterative training of a machine‐learning algorithm. ChemCatChem 12, 4317–4330 (2020).

    Article  CAS  Google Scholar 

  75. Flores, R. A. et al. Active learning accelerated discovery of stable iridium oxide polymorphs for the oxygen evolution reaction. Chem. Mater. 32, 5854–5863 (2020).

    Article  CAS  Google Scholar 

  76. Noh, J., Back, S., Kim, J. & Jung, Y. Active learning with non-ab initio input features toward efficient CO2 reduction catalysts. Chem. Sci. 9, 5152–5159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, X., Cai, C., Zhao, W., Peng, H.-J. & Wang, T. Machine learning-assisted screening of stepped alloy surfaces for C1 catalysis. ACS Catal. 12, 4252–4260 (2022).

    Article  CAS  Google Scholar 

  78. Hu, Y., Musielewicz, J., Ulissi, Z. & Medford, A. J. Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials. Mach. Learn. Sci. Technol. 3, 045028 (2022).

  79. Tran, K. et al. Methods for comparing uncertainty quantifications for material property predictions. Mach. Learn. Sci. Technol. 1, 025006 (2020).

    Article  Google Scholar 

  80. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  81. Omidvar, N. et al. Interpretable machine learning of chemical bonding at solid surfaces. J. Phys. Chem. Lett. 12, 11476–11487 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, S.-H., Pillai, H. S., Wang, S., Achenie, L. E. K. & Xin, H. Infusing theory into deep learning for interpretable reactivity prediction. Nat. Commun. 12, 5288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Montemore, M. M., Nwaokorie, C. F. & Kayode, G. O. General screening of surface alloys for catalysis. Catal. Sci. Technol. 10, 4467–4476 (2020).

    Article  CAS  Google Scholar 

  84. Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, Y. et al. Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nat. Catal. 3, 554–563 (2020).

    Article  CAS  Google Scholar 

  86. Zhai, S. et al. A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7, 866–875 (2022). Uses machine learning to extract design principles of perovskites for oxygen evolution by learning from experimentally measured area-specific resistances in literature.

    Article  CAS  Google Scholar 

  87. O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Article  Google Scholar 

  88. Han, Z.-K. et al. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12, 1833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

    Article  CAS  Google Scholar 

  90. Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019).

    Article  CAS  Google Scholar 

  91. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, W., Andersen, M. & Reuter, K. Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity. ACS Catal. 11, 734–742 (2021).

    Article  CAS  Google Scholar 

  93. Jiang, C. et al. Data-driven interpretable descriptors for the structure–activity relationship of surface lattice oxygen on doped vanadium oxides. Angew. Chem. Int. Ed. 61, e202206758 (2022).

    Article  CAS  Google Scholar 

  94. Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–143 (2015).

    Article  CAS  Google Scholar 

  95. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  96. Gao, Q. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 13, 2338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, S., Pillai, H. S. & Xin, H. Bayesian learning of chemisorption for bridging the complexity of electronic descriptors. Nat. Commun. 11, 6132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Uncovering electronic and geometric descriptors of chemical activity for metal alloys and oxides using unsupervised machine learning. Chem. Catal. 1, 923–940 (2021).

    Article  Google Scholar 

  99. Li, H. et al. Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS2. ACS Catal. 11, 7906–7914 (2021).

    Article  CAS  Google Scholar 

  100. Smith, A., Keane, A., Dumesic, J. A., Huber, G. W. & Zavala, V. M. A machine learning framework for the analysis and prediction of catalytic activity from experimental data. Appl. Catal. B 263, 118257 (2020).

    Article  CAS  Google Scholar 

  101. Chen, Y., Li, R., Suo, H. & Liu, C. Evaluation of a data-driven, machine learning approach for identifying potential candidates for environmental catalysts: from database development to prediction. ACS EST Eng. 1, 1246–1257 (2021).

    Article  CAS  Google Scholar 

  102. Mine, S. et al. Analysis of updated literature data up to 2019 on the oxidative coupling of methane using an extrapolative machine‐learning method to identify novel catalysts. ChemCatChem https://doi.org/10.1002/cctc.202100495 (2021).

  103. Zhang, Y. et al. Descriptor-free design of multicomponent catalysts. ACS Catal. 12, 10562–10571 (2022).

    Article  CAS  Google Scholar 

  104. Nguyen, T. N. et al. High-throughput experimentation and catalyst informatics for oxidative coupling of methane. ACS Catal. 10, 921–932 (2020).

    Article  CAS  Google Scholar 

  105. Batchelor, T. A. A. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).

    Article  CAS  Google Scholar 

  106. Williams, T., McCullough, K. & Lauterbach, J. A. Enabling catalyst discovery through machine learning and high-throughput experimentation. Chem. Mater. 32, 157–165 (2020).

    Article  CAS  Google Scholar 

  107. Wang, T. et al. Theory-aided discovery of metallic catalysts for selective propane dehydrogenation to propylene. ACS Catal. 11, 6290–6297 (2021).

    Article  CAS  Google Scholar 

  108. An all-round AI-chemist with scientific mind. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwac190 (2022). Bayesian optimization aided by AI chemists for catalyst discovery.

  109. Artrith, N., Urban, A. & Ceder, G. Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Phys. Rev. B 96, 014112 (2017).

    Article  Google Scholar 

  110. Behler, J. & Csányi, G. Machine learning potentials for extended systems: a perspective. Eur. Phys. J. B 94, 142 (2021).

    Article  CAS  Google Scholar 

  111. Pun, G. P. P., Batra, R., Ramprasad, R. & Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10, 2339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bussi, G. & Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2, 200–212 (2020).

    Article  Google Scholar 

  113. Adams, J. S. et al. Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd. Science 371, 626–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

  115. Ovalle, V. J., Hsu, Y.-S., Agrawal, N., Janik, M. J. & Waegele, M. M. Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5, 624–632 (2022).

    Article  CAS  Google Scholar 

  116. Wan, M., Yue, H., Notarangelo, J., Liu, H. & Che, F. Deep learning-assisted investigation of electric field–dipole effects on catalytic ammonia synthesis. J. Am. Chem. Soc. Au 2, 1338–1349 (2022).

    CAS  Google Scholar 

  117. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Theory-guided machine learning finds geometric structure–property relationships for chemisorption on subsurface alloys. Chem 6, 3100–3117 (2020).

    Article  CAS  Google Scholar 

  118. Hammer, B. & Nørsko, J. K. Theoretical surface science and catalysis—calculations and concept. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  119. Sainju, R. et al. DefectTrack: a deep learning-based multi-object tracking algorithm for quantitative defect analysis of in-situ TEM videos in real-time. Sci. Rep. 12, 15705 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Routh, P. K., Liu, Y., Marcella, N., Kozinsky, B. & Frenkel, A. I. Latent representation learning for structural characterization of catalysts. J. Phys. Chem. Lett. 12, 2086–2094 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Marcella, N. et al. Decoding reactive structures in dilute alloy catalysts. Nat. Commun. 13, 832 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Trummer, D. et al. Deciphering the Phillips catalyst by orbital analysis and supervised machine learning from Cr pre-edge XANES of molecular libraries. J. Am. Chem. Soc. 143, 7326–7341 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Martini, A. et al. Assessing the influence of zeolite composition on oxygen-bridged diamino dicopper(II) complexes in Cu–CHA DeNOx catalysts by machine learning-assisted X-ray absorption spectroscopy. J. Phys. Chem. Lett. 13, 6164–6170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kunz, M. R. et al. Data driven reaction mechanism estimation via transient kinetics and machine learning. Chem. Eng. J. 420, 129610 (2021).

    Article  CAS  Google Scholar 

  125. Chen, K., Tian, H., Li, B. & Rangarajan, S. A chemistry‐inspired neural network kinetic model for oxidative coupling of methane from high‐throughput data. AIChE J. 68, e17584 (2022).

    Article  CAS  Google Scholar 

  126. Savara, A. & Walker, E. A. CheKiPEUQ intro 1: Bayesian parameter estimation considering uncertainty or error from both experiments and theory. ChemCatChem 12, 5385–5400 (2020).

    Article  CAS  Google Scholar 

  127. Cohen, M. & Vlachos, D. G. Chemical kinetics Bayesian inference toolbox (CKBIT). Comput. Phys. Commun. 265, 107989 (2021).

    Article  CAS  Google Scholar 

  128. Fricke, C., Rajbanshi, B., Walker, E. A., Terejan, G. & Heyden, A. Propane dehydrogenation on platinum catalysts: identifying the active sites through Bayesian analysis. ACS Catal. 12, 2487–2498 (2022).

    Article  CAS  Google Scholar 

  129. Walker, E. A., Mitchell, D., Terejanu, G. A. & Heyden, A. Identifying active sites of the water–gas shift reaction over titania supported platinum catalysts under uncertainty. ACS Catal. 8, 3990–3998 (2018).

    Article  CAS  Google Scholar 

  130. Nandy, A., Duan, C. & Kulik, H. J. Using machine learning and data mining to leverage community knowledge for the engineering of stable metal–organic frameworks. J. Am. Chem. Soc. 143, 17535–17547 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    Article  CAS  Google Scholar 

  132. Brown, T. B. et al. Language models are few-shot learners. Adv. Neural Inf. Process Syst. 33, 1877–1901 (2020).

    Google Scholar 

  133. Winther, K. T. et al. Catalysis-hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  135. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  PubMed  Google Scholar 

  136. Esposito, D. Induce to reproduce. Nat. Catal. 5, 658–661 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

H.S.P., S.W. and H.X. acknowledge funding support from the NSF CAREER programme (CBET-1845531). T.M. and X.H. acknowledge funding support from the NSF Chemical Catalysis programme (CHE-2102363). H.X. acknowledges the partial support from the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-SC0023323. T.M. especially thanks the NSF Non-Academic Research Internships for Graduate Students (INTERN) programme for supporting his work in the Brookhaven National Lab chemistry division under the guidance of P. Liu. M.W. acknowledges funding support from the NSF EAGER programme (CBET-2103478). F.C. acknowledges the partial sponsorship by Department of Navy award N00014-22-1-2001 issued by the Office of Naval Research. The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.

Author information

Authors and Affiliations

Authors

Contributions

H.X., F.C. and N.S. conceived the idea of the Review. T.M., H.S.P. and S.W. led the manuscript writing. All the authors contributed to the revision of this manuscript.

Corresponding author

Correspondence to Hongliang Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Bryan Goldsmith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, T., Pillai, H.S., Wang, S. et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat Catal 6, 122–136 (2023). https://doi.org/10.1038/s41929-023-00911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00911-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing