Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases

Abstract

The ubiquity of C–H bonds presents an opportunity to efficiently elaborate and build complexity in organic molecules. Methods for selective functionalization, however, must differentiate among multiple, chemically similar C–H bonds: enzymes are attractive because they can be finely tuned using directed evolution to achieve divergent reaction outcomes. Here we present engineered enzymes that effect a new-to-nature C–H alkylation (C–H carbene insertion) with distinct selectivities: cytochrome P450-based carbene transferases deliver an α-cyanocarbene either into the α-amino C(sp3)–H bonds or the ortho-arene C(sp2)–H bonds of N-substituted arenes. These two transformations proceed via different mechanisms, yet only minimal changes to the protein scaffold were needed to adjust the enzyme’s chemoselectivity. Structural studies of the C(sp3)–H alkylase reveal an active-site helical disruption, which alters the structure and electrostatics of the substrate-binding pocket compared to the native enzyme. Overall, this work demonstrates advantages of using highly tuneable enzymes as C–H functionalization catalysts for divergent molecular derivatization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reaction design.
Fig. 2: Crystallographic studies of P411-PFA (PDB 8DSG).
Fig. 3: Directed evolution of a selective arene C–H cyanomethylase.
Fig. 4: Substrate scope study.

Similar content being viewed by others

Data availability

All data necessary to support the paper’s conclusions are available in the main text and Supplementary Information or from the authors upon reasonable request. The haem-domain structure of P411-PFA is available through the PDB ID 8DSG. Plasmids encoding the enzymes reported in this study are available for research purposes from F.H.A. under a material transfer agreement with the California Institute of Technology.

References

  1. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davies, H. M. L., Bois, J. D. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl. 51, 8960–9009 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  Google Scholar 

  7. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    Article  CAS  Google Scholar 

  9. Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neufeldt, S. R. & Sanford, M. S. Controlling site selectivity in palladium-catalyzed C–H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu, Z., Li, Y., Zhang, P., Liu, L. & Zhang, J. Ligand and counteranion enabled regiodivergent C–H bond functionalization of naphthols with α-aryl-α-diazoesters. Chem. Sci. 10, 6553–6559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greule, A., Stok, J. E., Voss, J. J. D. & Cryle, M. J. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat. Prod. Rep. 35, 757–791 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, K., Shafer, B. M., Demars, M. D., Stern, H. A. & Fasan, R. Controlled oxidation of remote sp3 C–H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 134, 18695–18704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lukowski, A. L. et al. C–H hydroxylation in paralytic shellfish toxin biosynthesis. J. Am. Chem. Soc. 140, 11863–11869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, X. et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science 369, 799–806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andorfer, M. C., Park, H. J., Vergara-Coll, J. & Lewis, J. C. Directed evolution of RebH for catalyst-controlled halogenation of indole C–H bonds. Chem. Sci. 7, 3720–3729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15, 1009–1016 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi, T. et al. Evolved aliphatic halogenases enable regiocomplementary C−H functionalization of a pharmaceutically relevant compound. Angew. Chem. Int. Ed. Engl. 58, 18535–18539 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  23. Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, R. K., Huang, X. & Arnold, F. H. Selective C–H bond functionalization with engineered heme proteins: new tools to generate complexity. Curr. Opin. Chem. Biol. 49, 67–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotechnol. 47, 102–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Natoli, S. N. & Hartwig, J. F. Noble-metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)−H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C−H bonds. Chem. Rev. 110, 704–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature 565, 67–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, J., Huang, X., Zhang, R. K. & Arnold, F. H. Enantiodivergent α-amino C–H fluoroalkylation catalyzed by engineered cytochrome P450s. J. Am. Chem. Soc. 141, 9798–9802 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, A. Z., Chen, K. & Arnold, F. H. Enzymatic lactone-carbene C–H insertion to build contiguous chiral centers. ACS Catal. 10, 5393–5398 (2020).

    Article  CAS  Google Scholar 

  33. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Gu, Y., Natoli, S. N., Liu, Z., Clark, D. S. & Hartwig, J. F. Site-selective functionalization of (sp3)C−H bonds catalyzed by artificial metalloenzymes containing an iridium-porphyrin cofactor. Angew. Chem. Int. Ed. Engl. 58, 13954–13960 (2019).

  36. Caballero, A. et al. Catalytic functionalization of low reactive C(sp3)–H and C(sp2)–H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Trans. 44, 20295–20307 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z. & Wang, J. Cross-coupling reactions involving metal carbene: from C═C/C–C bond formation to C–H bond functionalization. J. Org. Chem. 78, 10024–10030 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Fructos, M. R. et al. A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew. Chem. Int. Ed. Engl. 44, 5284–5288 (2005).

  39. Fructos, M. R. et al. Mechanistic studies on gold-catalyzed direct arene C–H bond functionalization by carbene insertion: the coinage-metal effect. Organometallics 36, 172–179 (2017).

    Article  CAS  Google Scholar 

  40. Conde, A. et al. Iron and manganese catalysts for the selective functionalization of arene C(sp2)−H bonds by carbene insertion. Angew. Chem. Int. Ed. Engl. 55, 6530–6534 (2016).

  41. Postils, V. et al. Mechanism of the selective Fe-catalyzed arene carbon–hydrogen bond functionalization. ACS Catal. 8, 4313–4322 (2018).

    Article  CAS  Google Scholar 

  42. Xi, Y. et al. Chemoselective carbophilic addition of α-diazoesters through ligand-controlled gold catalysis. Angew. Chem. Int. Ed. Engl. 53, 9817–9821 (2014).

  43. Yu, Z. et al. Highly site-selective direct C–H bond functionalization of phenols with α-aryl-α-diazoacetates and diazooxindoles via gold catalysis. J. Am. Chem. Soc. 136, 6904–6907 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, B., Li, M.-L., Zuo, X.-D., Zhu, S.-F. & Zhou, Q.-L. Catalytic asymmetric arylation of α-aryl-α-diazoacetates with aniline derivatives. J. Am. Chem. Soc. 137, 8700–8703 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, B. et al. Highly para-selective C−H alkylation of benzene derivatives with 2,2,2-trifluoroethyl α-aryl-α-diazoesters. Angew. Chem. Int. Ed. Engl. 56, 2749–2753 (2017).

  46. Holmberg-Douglas, N., Onuska, N. P. R. & Nicewicz, D. A. Regioselective arene C−H alkylation enabled by organic photoredox catalysis. Angew. Chem. Int. Ed. Engl. 59, 7425–7429 (2020).

  47. Pizarro, J. D., Schmidtke, I. L., Nova, A., Fructos, M. R. & Pérez, P. J. Selective functionalization of arene C(sp2)–H bonds by gold catalysis: the role of carbene substituents. ACS Catal. 12, 6851–6856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vargas, D. A., Tinoco, A., Tyagi, V. & Fasan, R. Myoglobin-catalyzed C−H functionalization of unprotected indoles. Angew. Chem. Int. Ed. Engl. 57, 9911–9915 (2018).

  49. Brandenberg, O. F., Chen, K. & Arnold, F. H. Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds. J. Am. Chem. Soc. 141, 8989–8995 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lennox, A. J. J. et al. Electrochemical aminoxyl-mediated α-cyanation of secondary piperidines for pharmaceutical building block diversification. J. Am. Chem. Soc. 140, 11227–11231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mykhailiuk, P. K. & Koenigs, R. M. Diazoacetonitrile (N2CHCN): a long forgotten but valuable reagent for organic synthesis. Chem. Eur. J. 26, 89–101 (2020).

  53. Chandgude, A. L. & Fasan, R. Highly diastereo- and enantioselective synthesis of nitrile-substituted cyclopropanes by myoglobin-mediated carbene transfer catalysis. Angew. Chem. Int. Ed. Engl. 57, 15852–15856 (2018).

  54. Hock, K. J. et al. Tryptamine synthesis by iron porphyrin catalyzed C−H functionalization of indoles with diazoacetonitrile. Angew. Chem. Int. Ed. Engl. 58, 3630–3634 (2019).

  55. Coelho, P. S. et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat. Chem. Biol. 9, 485–487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hyster, T. K., Farwell, C. C., Buller, A. R., McIntosh, J. A. & Arnold, F. H. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H amination. J. Am. Chem. Soc. 136, 15505–15508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, H. & Poulos, T. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Mol. Biol. 4, 140–146 (1997).

    Article  CAS  Google Scholar 

  59. Cooley, R. B., Arp, D. J. & Karplus, P. A. Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of α-helices that enhance protein functionality. J. Mol. Biol. 404, 232–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yeom, H., Sligar, S. G., Li, H., Poulos, T. L. & Fulco, A. J. The role of Thr268 in oxygen activation of cytochrome P450BM-3. Biochemistry 34, 14733–14740 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Ost, T. W. B. et al. Structural and spectroscopic analysis of the F393H mutant of flavocytochrome P450 BM3. Biochemistry 40, 13430–13438 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Krest, C. M. et al. Significantly shorter Fe–S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase. Nat. Chem. 7, 696–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ford, A. et al. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 115, 9981–10080 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Reisman, S. E., Nani, R. R. & Levin, S. Buchner and beyond: arene cyclopropanation as applied to natural product total synthesis. Synlett 2011, 2437–2442 (2011).

    Article  Google Scholar 

  65. Fleming, G. S. & Beeler, A. B. Regioselective and enantioselective intermolecular Buchner ring expansion in flow. Org. Lett. 2017, 5268–5271 (2017).

    Article  Google Scholar 

  66. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of General Medical Science of the NIH (grant no. R01GM138740). E.A. is supported by a Ruth Kirschstein NIH Postdoctoral Fellowship (grant no. F32GM143799). R.M. is supported by Swiss National Science Foundation (grant no. P2ELP2_195118). N.J.P. acknowledges support from Merck and the Helen Hay Whitney Foundation through the Merck-HHWF Fellowship. We thank D. C. Rees for providing space and resources to carry out the crystallography studies and for valuable discussion, and S. C. Virgil, J. T. Kaiser and M. Shahgholi for analytical assistance. We also thank S. Brinkman-Chen, J. L. Kennemur, Z. Liu and D. C. Miller for helpful discussions and comments on the manuscript. We thank D. and J. Voet, the Gordon and Betty Moore Foundation, and the Beckman Institute for their generous support of the Molecular Observatory at Caltech. We thank the staff at Beamline 12-2, Stanford Synchrotron Radiation Lightsource (SSRL). SSRL operations are supported by the US Department of Energy and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. designed the overall research with F.H.A. providing guidance. J.Z. designed and conducted the initial screening of haem proteins. J.Z. and N.M.A. performed the directed evolution experiments. J.Z., E.A. and R.M. designed and performed the substrate scope studies and analysis. A.O.M. obtained and analysed the X-ray crystal structure of the engineered proteins with N.J.P. providing help. J.Z. and F.H.A. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Frances H. Arnold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–8, Methods, Notes 1–6, NMR spectra and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Maggiolo, A.O., Alfonzo, E. et al. Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nat Catal 6, 152–160 (2023). https://doi.org/10.1038/s41929-022-00908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00908-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing