Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Promotion of adsorptive and catalytic properties of zeolitic Brønsted acid sites by proximal extra-framework Si(OH)x groups

Abstract

Steric confinement in zeolites influences the catalytic conversion of alkanes. For zeolitic Brønsted acid sites, proximate extra-framework species introduce additional confinement to the pore constraints, enhancing the catalytic activity of alkane cracking. Although extra-framework alumina has been the most studied, here we report the element-specific impact of silica species. By grafting extra-framework silica species close to Brønsted acid sites in H-ZSM-5 zeolite, the binding of bases like pyridine and amines is strengthened via van der Waals interactions with their aryl or alkyl chains. Brønsted acid sites close to extra-framework silica achieve a higher reaction rate of protolytic cracking of n-pentane via enthalpic (unlike entropic, as with extra-framework alumina) stabilization of the transition state by 24–51 kJ mol−1. The lower activation energy points to an earlier transition state than in the presence of extra-framework alumina, with a better stabilization of the carbonium ions in the transition state compared to the parent zeolite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Grafting EFSi in H-MFI.
Fig. 2: The titration of BAS and EFSi-BAS with pyridine adsorption.
Fig. 3: Adsorption of different probe base molecules on EFSi-MFI-46% at 423 K.
Fig. 4: n-Pentane adsorption on H-MFI and EFSi-MFI-46%.
Fig. 5: BAS-catalysed protolytic n-pentane cracking and dehydrogenation on zeolites.
Fig. 6: Comparison between BAS, EFAl-BAS and EFSi-BAS.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request.

References

  1. Rahimi, N. & Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl. Catal. A 398, 1–17 (2011).

    Article  CAS  Google Scholar 

  2. Babitz, S. M. M. et al. Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Appl. Catal. A 179, 71–86 (1999).

    Article  CAS  Google Scholar 

  3. Weitkamp, J., Jacobs, P. A. & Martens, J. A. Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite. Appl. Catal. 8, 123–141 (1983).

    Article  CAS  Google Scholar 

  4. Young, L. B., Butter, S. A. & Kaeding, W. W. Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. J. Catal. 76, 418–432 (1982).

    Article  CAS  Google Scholar 

  5. Xu, B., Sievers, C., Hong, S. B., Prins, R. & van Bokhoven, J. A. Catalytic activity of Brønsted acid sites in zeolites: intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244, 163–168 (2006).

    Article  CAS  Google Scholar 

  6. Ward, J. W. The nature of active sites on zeolites: V. In situ spectroscopic observations of hydrogen Y zeolite during cumene cracking. J. Catal. 11, 259–260 (1968).

    Article  CAS  Google Scholar 

  7. Kissin, Y. V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes. Catal. Rev. Sci. Eng. 43, 85–146 (2001).

    Article  CAS  Google Scholar 

  8. Ozaki, A. & Kimura, K. The effective site on acid catalysts revealed in n-butene isomerization. J. Catal. 3, 395–405 (1964).

    Article  CAS  Google Scholar 

  9. Asuquo, R. A., Edermirth, G. & Lercher, J. A. n-Butane isomerization over acidic mordenite. J. Catal. 155, 376–382 (1995).

    Article  CAS  Google Scholar 

  10. Feller, A., Guzman, A., Zuazo, I. & Lercher, J. A. On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J. Catal. 224, 80–93 (2004).

    Article  CAS  Google Scholar 

  11. Naccache, C., Ren, C. F. & Coudurier, G. Strength of acid sites in zeolites using UV-visible spectroscopy: effect of Al content. Stud. Surf. Sci. Catal. 49, 661–668 (1989).

    Article  Google Scholar 

  12. Masuda, T., Fujikata, Y., Mukai, S. R. & Hashimoto, K. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Appl. Catal. A 172, 73–83 (1998).

    Article  CAS  Google Scholar 

  13. Li, S. et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 129, 11161–11171 (2007).

    Article  CAS  Google Scholar 

  14. Chu, C. T. W. & Chang, C. D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. J. Phys. Chem. 89, 1569–1571 (1985).

  15. Losch, P. et al. Proton mobility, intrinsic acid strength, and acid site location in zeolites revealed by varying temperature infrared spectroscopy and density functional theory studies. J. Am. Chem. Soc. 140, 17790–17799 (2018).

    Article  CAS  Google Scholar 

  16. Jones, A. J., Carr, R. T., Zones, S. I. & Iglesia, E. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. J. Catal. 312, 58–68 (2014).

    Article  CAS  Google Scholar 

  17. Ward, J. W. The nature of active sites on zeolites. VIII. Rare earth Y zeolite. J. Catal. 13, 321–327 (1969).

    Article  Google Scholar 

  18. Xiaoning, W. et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins. J. Rare Earths 25, 321–328 (2007).

    Article  Google Scholar 

  19. Martins, A., Silva, J. M. & Ribeiro, M. F. Influence of rare earth elements on the acid and metal sites of Pt/HBEA catalyst for short chain n-alkane hydroisomerization. Appl. Catal. A 466, 293–299 (2013).

    Article  CAS  Google Scholar 

  20. Sastre, G. & Corma, A. The confinement effect in zeolites. J. Mol. Catal. A 305, 3–7 (2009).

    Article  CAS  Google Scholar 

  21. Gounder, R. & Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 49, 3491–3509 (2013).

    Article  CAS  Google Scholar 

  22. Eder, F. & Lercher, J. A. On the role of the pore size and tortuosity for sorption of alkanes in molecular sieves. J. Phys. Chem. B 101, 1273–1278 (1997).

    Article  CAS  Google Scholar 

  23. De Moor, B. A., Reyniers, M.-F., Gobin, O. C., Lercher, J. A. & Marin, G. B. Adsorption of C2–C8 n-alkanes in zeolites. J. Phys. Chem. C 115, 1204–1219 (2010).

    Article  Google Scholar 

  24. Janda, A., Vlaisavljevich, B., Lin, L. C., Smit, B. & Bell, A. T. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane. J. Am. Chem. Soc. 138, 4739–4756 (2016).

    Article  CAS  Google Scholar 

  25. Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. https://doi.org/10.1021/acscatal.8b04317 (2019).

  26. Wang, Q., Cui, Z. M., Cao, C. Y. & Song, W. G. 0.3 Å makes the difference: dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites. J. Phys. Chem. C 115, 24987–24992 (2011).

    Article  CAS  Google Scholar 

  27. Silaghi, M.-C., Chizallet, C. & Raybaud, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater. 191, 82–96 (2014).

    Article  CAS  Google Scholar 

  28. Silaghi, M.-C., Chizallet, C., Sauer, J. & Raybaud, P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. 339, 242–255 (2016).

    Article  CAS  Google Scholar 

  29. Schallmoser, S. et al. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. J. Catal. 316, 93–102 (2014).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites. J. Catal. 370, 424–433 (2019).

    Article  CAS  Google Scholar 

  31. Lago, R. M. et al. The nature of the catalytic sites in HZSM-5-activity enhancement. Stud. Surf. Sci. Catal. 28, 677–684 (1986).

    Article  CAS  Google Scholar 

  32. van Bokhoven, J. A. et al. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite: the dominant role of adsorption. J. Catal. 202, 129–140 (2001).

    Article  Google Scholar 

  33. Van Bokhoven, J. A. et al. Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. J. Catal. 224, 50–59 (2004).

    Article  Google Scholar 

  34. Yu, Z., Wang, Q., Chen, L. & Deng, F. Brønsted/Lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chin. J. Catal. 33, 129–139 (2012).

    Article  CAS  Google Scholar 

  35. Haag, W. O. Catalysis by zeolites—science and technology. Stud. Surf. Sci. Catal. 84, 1375–1394 (1994).

    Article  CAS  Google Scholar 

  36. Li, S. et al. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. J. Phys. Chem. C 112, 14486–14494 (2008).

    Article  CAS  Google Scholar 

  37. Gounder, R., Jones, A. J., Carr, R. T. & Iglesia, E. Solvation and acid strength effects on catalysis by faujasite zeolites. J. Catal. 286, 214–223 (2012).

    Article  CAS  Google Scholar 

  38. Xue, N. et al. Hydrolysis of zeolite framework aluminum and its impact on acid catalyzed alkane reactions. J. Catal. 365, 359–366 (2018).

    Article  CAS  Google Scholar 

  39. Zheng, J. et al. A periodic DFT study of the synergistic mechanisms between extraframework aluminum species and Brønsted acid sites in HY zeolites. Ind. Eng. Chem. Res. 59, 2736–2744 (2020).

    Article  CAS  Google Scholar 

  40. O’Connor, C. T., Möller, K. P. & Manstein, H. The effect of silanisation on the catalytic and sorption properties of zeolites. KONA Powder Part. J. 25, 230–236 (2007).

    Article  Google Scholar 

  41. Niwa, M., Kato, M., Hattori, T. & Murakami, Y. Fine control of the pore-opening size of zeolite ZSM-5 by chemical vapor deposition of silicon methoxide. J. Phys. Chem. 90, 6233–6237 (1986).

    Article  CAS  Google Scholar 

  42. Zheng, S., Heydenrych, H. R., Röger, H. P., Jentys, A. & Lercher, J. A. On the enhanced selectivity of HZSM-5 modified by chemical liquid deposition. Top. Catal. 22, 101–106 (2003).

    Article  CAS  Google Scholar 

  43. Janda, A. & Bell, A. T. Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI. J. Am. Chem. Soc. 135, 19193–19207 (2013).

    Article  CAS  Google Scholar 

  44. Parrillo, D. J., Adamo, A. T., Kokotailo, G. T. & Gorte, R. J. Amine adsorption in H-ZSM-5. Appl. Catal. 67, 107–118 (1990).

    Article  CAS  Google Scholar 

  45. Ledoux, R. L. & White, J. L. Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea. J. Colloid Interface Sci. 21, 127–152 (1966).

    Article  CAS  Google Scholar 

  46. Vansant, E. F., Van Der Voort, P. & Vrancken, K. C. Characterization and Chemical Modification of the Silica Surface Vol. 93, 2960–2970 (Elsevier, 1995).

  47. Zecchina, A. et al. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. J. Chem. Soc. Faraday Trans. 88, 2959–2969 (1992).

    Article  CAS  Google Scholar 

  48. Trombetta, M., Armaroli, T., Gutièrrez Alejandre, A., Ramirez Solis, J. & Busca, G. An FT-IR study of the internal and external surfaces of HZSM5 zeolite. Appl. Catal. A 192, 125–136 (2000).

    Article  CAS  Google Scholar 

  49. Guisnet, M., Ayrault, P., Coutanceau, C., Alvarez, M. F. & Datka, J. Acid properties of dealuminated beta zeolites studied by IR spectroscopy. J. Chem. Soc. Faraday Trans. 93, 1661–1665 (1997).

    Article  CAS  Google Scholar 

  50. Zholobenko, V. L., Kustov, L. M., Borovkov, V. Y. & Kazansky, V. B. A new type of acidic hydroxyl groups in ZSM-5 zeolite and in mordenite according to diffuse reflectance IR spectroscopy. Zeolites 8, 175–178 (1988).

    Article  CAS  Google Scholar 

  51. Jentys, A., Warecka, G., Derewinski, M. & Lercher, J. A. Adsorption of water on ZSM 5 zeolites. J. Phys. Chem. 93, 4837–4843 (1989).

    Article  CAS  Google Scholar 

  52. Loeffler, E. et al. Study of different states of nonframework aluminum in hydrothermally dealuminated HZSM-5 zeolites using diffuse reflectance IR spectroscopy. Zeolites 10, 266–271 (1990).

    Article  CAS  Google Scholar 

  53. Kung, M. C. & Kung, H. H. IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides. Catal. Rev. 27, 425–460 (1985).

    Article  Google Scholar 

  54. Chakraborty, B. & Viswanathan, B. Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption. Catal. Today 49, 253–260 (1999).

    Article  CAS  Google Scholar 

  55. Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347–354 (1993).

    Article  CAS  Google Scholar 

  56. Eder, F., Stockenhuber, M. & Lercher, J. A. Brønsted acid site and pore controlled siting of alkane sorption in acidic molecular sieves. J. Phys. Chem. B 101, 5414–5419 (1997).

    Article  CAS  Google Scholar 

  57. Kotrel, S., Knözinger, H. & Gates, B. C. The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater. 35, 11–20 (2000).

    Article  Google Scholar 

  58. Al‐majnouni, K. A., Yun, J. H. & Lobo, R. F. High‐temperature produced catalytic sites selective for n‐alkane dehydrogenation in acid zeolites: the case of HZSM‐5. ChemCatChem 3, 1333–1341 (2011).

    Article  Google Scholar 

  59. Liu, Y. et al. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat. Catal. 1, 141–147 (2018).

    Article  CAS  Google Scholar 

  60. Janda, A., Vlaisavljevich, B., Lin, L.-C., Smit, B. & Bell, A. T. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane. J. Am. Chem. Soc. 138, 4739–4756 (2016).

    Article  CAS  Google Scholar 

  61. Jentys, A., Kleestorfer, K. & Vinek, H. Concentration of surface hydroxyl groups on MCM-41. Microporous Mesoporous Mater. 27, 321–328 (1999).

    Article  CAS  Google Scholar 

  62. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  63. Russo, T. V., Martin, R. L. & Hay, P. J. Density functional calculations on first‐row transition metals. J. Chem. Phys. 101, 7729–7737 (1994).

    Article  CAS  Google Scholar 

  64. Tao, J., Perdew, J. P., Tang, H. & Shahi, C. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. J. Chem. Phys. 148, 074110 (2018).

    Article  Google Scholar 

  65. Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).

    Article  CAS  Google Scholar 

  66. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  67. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Article  Google Scholar 

  68. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  Google Scholar 

  69. Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem. 24, 1740–1747 (2003).

    Article  CAS  Google Scholar 

  70. Vahtras, O., Almlöf, J. & Feyereisen, M. W. Integral approximations for LCAO-SCF calculations. Chem. Phys. Lett. 213, 514–518 (1993).

    Article  CAS  Google Scholar 

  71. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  72. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    Article  CAS  Google Scholar 

  73. Ehrlich, S., Moellmann, J., Reckien, W., Bredow, T. & Grimme, S. System‐dependent dispersion coefficients for the DFT‐D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem 12, 3414–3420 (2011).

    Article  CAS  Google Scholar 

  74. Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (International Zeolite Association Structure Commission, accessed on 09 June 2020); http://www.iza-structure.org/databases/

Download references

Acknowledgements

Conceptual work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences (Impact of catalytically active centers and their environment on rates and thermodynamic states along reaction paths, FWP 47319). We gratefully acknowledge the Leibniz Supercomputing Center for funding this project by providing computing time on their Linux-Cluster. R.Z. is grateful to the Chinese Scholarship Council for financial support. We also acknowledge M. Iqbal and M. Neukamm for technical support concerning the nitrogen physisorption and elemental analysis, respectively.

Funding

Open Access funding enabled and organized by Projekt DEAL

Author information

Authors and Affiliations

Authors

Contributions

R.Z. carried out experimental preparation of the catalyst samples, their reactions and characterization. R.K. performed the theoretical calculations. Y.Z., M.S.-S. and R.B.-D. cooperated with the discussion and provided valuable suggestions. Y.L. and J.A.L. supervised the work and provided guidance throughout the project. All authors have given their approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yue Liu or Johannes A. Lercher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Xiaolei Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–7, Notes 1–3 and refs. 1–4.

Supplementary Data 1

MFI cluster structure.

Supplementary Data 2

Sample Orca input file used for geometry optimizations.

Supplementary Data 3

Sample Orca input file used for electronic property calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Khare, R., Zhang, Y. et al. Promotion of adsorptive and catalytic properties of zeolitic Brønsted acid sites by proximal extra-framework Si(OH)x groups. Nat Catal 6, 68–79 (2023). https://doi.org/10.1038/s41929-022-00906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00906-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing