Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic mechanism for Renilla-type luciferases

Abstract

The widely used coelenterazine-powered Renilla luciferase was discovered over 40 years ago, but the oxidative mechanism by which it generates blue photons remains unclear. Here we decipher Renilla-type catalysis through crystallographic, spectroscopic and computational experiments. Structures of ancestral and extant luciferases complexed with the substrate-like analogue azacoelenterazine or a reaction product were obtained, providing molecular snapshots of coelenterazine-to-coelenteramide oxidation. Bound coelenterazine adopts a Y-shaped conformation, enabling the deprotonated imidazopyrazinone component to attack O2 via a radical charge-transfer mechanism. A high emission intensity is secured by an aspartate from a conserved proton-relay system, which protonates the excited coelenteramide product. Another aspartate on the rim of the catalytic pocket fine-tunes the electronic state of coelenteramide and promotes the formation of the blue light-emitting phenolate anion. The results obtained also reveal structural features distinguishing flash-type from glow-type bioluminescence, providing insights that will guide the engineering of next-generation luciferase‒luciferin pairs for ultrasensitive optical bioassays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibitory effects of azaCTZ on AncFT and RLuc8 bioluminescence.
Fig. 2: Structures of azaCTZ- and CEI-bound AncFT luciferase.
Fig. 3: Structures of azaCTZ-, CEI- and CNM-bound RLuc8 variants.
Fig. 4: Structural and functional determinants of Renilla-type bioluminescence.
Fig. 5: Spectroscopic dissection of the mechanism of Renilla-type bioluminescence.
Fig. 6: Emission spectra of RLuc8 and AncFT luciferases with native CTZ and its derivatives.
Fig. 7: A proposed catalytic mechanism of CTZ-powered Renilla-type bioluminescence.

Similar content being viewed by others

Data availability

Atomic coordinates and structural factors have been deposited in the PDB (www.wwpdb.org)70 under accession codes 7QXR, 7QXQ, 7OMD, 7OMR and 7OMO. We will release the atomic coordinates and experimental data on article publication. The primary data from molecular dynamics simulations are available in Zenodo repository with the identifier https://doi.org/10.5281/zenodo.7241544. Source data are provided with this paper.

References

  1. Mitiouchkina, T. et al. Plants with genetically encoded autoluminescence. Nat. Biotechnol. 38, 944–946 (2020).

    Article  CAS  Google Scholar 

  2. Bueso, Y. F. & Tangney, M. Synthetic biology in the driving seat of the bioeconomy. Trends Biotechnol. 35, 373–378 (2017).

    Article  Google Scholar 

  3. Xu, T. et al. The expanding toolbox of in vivo bioluminescent imaging. Front. Oncol. 6, 150 (2016).

    Article  Google Scholar 

  4. Syed, A. J. & Anderson, J. C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev. 50, 5668–5705 (2021).

    Article  CAS  Google Scholar 

  5. Fleiss, A. & Sarkisyan, K. S. A brief review of bioluminescent systems (2019). Curr. Genet. 65, 877–882 (2019).

    Article  CAS  Google Scholar 

  6. Nicol, J. A. C. Observations on luminescence in Renilla (Pennatulacea). J. Exp. Biol. 32, 299–320 (1955).

    Article  Google Scholar 

  7. Matthews, J. C., Hori, K. & Cormier, M. J. Purification and properties of Renilla reniformis luciferase. Biochemistry 16, 85–91 (1977).

    Article  CAS  Google Scholar 

  8. Lorenz, W. W., McCann, R. O., Longiaru, M. & Cormier, M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl Acad. Sci. USA 88, 4438–4442 (1991).

    Article  CAS  Google Scholar 

  9. Delroisse, J., Duchatelet, L., Flammang, P. & Mallefet, J. Leaving the dark side? Insights into the evolution of Luciferases. Front. Mar. Sci. 8, 690 (2021).

    Article  Google Scholar 

  10. Delroisse, J. et al. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 7, 160300 (2017).

    Article  Google Scholar 

  11. Chaloupkova, R. et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 9, 4810–4823 (2019).

    Article  CAS  Google Scholar 

  12. Janssen, D. B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8, 150–159 (2004).

    Article  CAS  Google Scholar 

  13. Schenkmayerova, A. et al. Engineering the protein dynamics of an ancestral luciferase. Nat. Commun. 12, 3616 (2021).

    Article  CAS  Google Scholar 

  14. Loening, A. M., Fenn, T. D. & Gambhir, S. S. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J. Mol. Biol. 374, 1017–1028 (2007).

    Article  CAS  Google Scholar 

  15. Loening, A. M., Wu, A. M. & Gambhir, S. S. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat. Methods 4, 641–643 (2007).

    Article  CAS  Google Scholar 

  16. McCapra, F. & Chang, Y. C. The chemiluminescence of a Cypridina luciferin analogue. Chem. Commun. Lond. https://doi.org/10.1039/C19670001011 (1967).

  17. Goto, T. Chemistry of bioluminescence. Pure Appl. Chem. 17, 421–442 (1968).

    Article  CAS  Google Scholar 

  18. Campbell, A. K. & Herring, P. J. Imidazolopyrazine bioluminescence in copepods and other marine organisms. Mar. Biol. 104, 219–225 (1990).

    Article  CAS  Google Scholar 

  19. Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2010).

    Article  Google Scholar 

  20. Shimomura, O., Masugi, T., Johnson, F. H. & Haneda, Y. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17, 994–998 (1978).

    Article  CAS  Google Scholar 

  21. Ohmiya, Y. & Hirano, T. Shining the light: the mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chem. Biol. 3, 337–347 (1996).

    Article  CAS  Google Scholar 

  22. Inouye, S., Sahara-Miura, Y., Nakamura, M. & Hosoya, T. Expression, purification, and characterization of recombinant apoPholasin. Protein Expr. Purif. 171, 105615 (2020).

    Article  CAS  Google Scholar 

  23. Griffiths, T. M., Oakley, A. J. & Yu, H. Atomistic insights into photoprotein formation: computational prediction of the properties of coelenterazine and oxygen binding in obelin. J. Comput. Chem. 41, 587–603 (2020).

    Article  CAS  Google Scholar 

  24. Branchini, B. R. et al. Experimental support for a single electron-transfer oxidation mechanism in firefly bioluminescence. J. Am. Chem. Soc. 137, 7592–7595 (2015).

    Article  CAS  Google Scholar 

  25. Rahnama, S., Saffar, B., Kahrani, Z. F., Nazari, M. & Emamzadeh, R. Super RLuc8: a novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission. Enzym. Microb. Technol. 96, 60–66 (2017).

    Article  CAS  Google Scholar 

  26. Loening, A. M., Fenn, T. D., Wu, A. M. & Gambhir, S. S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. PEDS 19, 391–400 (2006).

    Article  CAS  Google Scholar 

  27. Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl Acad. Sci. USA 103, 15835–15840 (2006).

    Article  CAS  Google Scholar 

  28. Deller, M. C., Kong, L. & Rupp, B. Protein stability: a crystallographer’s perspective. Acta Crystallogr. Sect. F. Struct. Biol. Commun. 72, 72–95 (2016).

    Article  CAS  Google Scholar 

  29. Doerr, A. Widening the protein crystallization bottleneck. Nat. Methods 3, 961–961 (2006).

    Article  CAS  Google Scholar 

  30. Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    Article  CAS  Google Scholar 

  31. Schriever, K. et al. Engineering of ancestors as a tool to elucidate structure, mechanism, and specificity of extant terpene cyclase. J. Am. Chem. Soc. 143, 3794–3807 (2021).

    Article  CAS  Google Scholar 

  32. Perez-Garcia, P. et al. A promiscuous ancestral enzyme’s structure unveils protein variable regions of the highly diverse metallo-β-lactamase family. Commun. Biol. 4, 132 (2021).

    Article  CAS  Google Scholar 

  33. Castro-Fernandez, V. et al. Reconstructed ancestral enzymes reveal that negative selection drove the evolution of substrate specificity in ADP-dependent kinases. J. Biol. Chem. 292, 15598–15610 (2017).

    Article  CAS  Google Scholar 

  34. Muñoz, S. M., Castro-Fernandez, V. & Guixé, V. Structure of an ancestral ADP-dependent kinase with fructose-6P reveals key residues for binding, catalysis, and ligand-induced conformational changes. J. Biol. Chem. 296, 100219 (2021).

    Article  Google Scholar 

  35. Nicoll, C. R. et al. Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nat. Struct. Mol. Biol. 27, 14–24 (2020).

    Article  CAS  Google Scholar 

  36. Coutant, E. P. et al. Gram-scale synthesis of luciferins derived from coelenterazine and original insights into their bioluminescence properties. Org. Biomol. Chem. 17, 3709–3713 (2019).

    Article  CAS  Google Scholar 

  37. Verschueren, K. H. G., Seljée, F., Rozeboom, H. J., Kalk, K. H. & Dijkstra, B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363, 693–698 (1993).

    Article  CAS  Google Scholar 

  38. Shigehisa, M. et al. Stabilization of luciferase from Renilla reniformis using random mutations. Protein Eng. Des. Sel. 30, 7–13 (2017).

    CAS  Google Scholar 

  39. Woo, J. & von Arnim, A. G. Mutational optimization of the coelenterazine-dependent luciferase from Renilla. Plant Methods 4, 23 (2008).

    Article  Google Scholar 

  40. Bui, S. & Steiner, R. A. New insight into cofactor-free oxygenation from combined experimental and computational approaches. Curr. Opin. Struct. Biol. 41, 109–118 (2016).

    Article  CAS  Google Scholar 

  41. Steiner, R. A., Janssen, H. J., Roversi, P., Oakley, A. J. & Fetzner, S. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold. Proc. Natl Acad. Sci. USA 107, 657–662 (2010).

    Article  CAS  Google Scholar 

  42. Buettner, G. R. Spin trapping: ESR parameters of spin adducts. Free Radic. Biol. Med. 3, 259–303 (1987).

    Article  CAS  Google Scholar 

  43. Lupidi, G. et al. Synthesis, structural and spectroscopic characterization and biomimetic properties of new copper, manganese, zinc complexes: identification of possible superoxide-dismutase mimics bearing hydroxyl radical generating/scavenging abilities. J. Inorg. Biochem. 104, 820–830 (2010).

    Article  CAS  Google Scholar 

  44. Gao, Z., Yang, X., Huang, K. & Xu, H. Free-radical scavenging and mechanism study of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Appl. Magn. Reson. 19, 35–44 (2000).

    Article  CAS  Google Scholar 

  45. Ueno, I., Kohno, M., Haraikawa, K. & Hirono, I. Interaction between quercetin and superoxide radicals. Reduction of the quercetin mutagenicity. J. Pharmacobiodyn. 7, 798–803 (1984).

    Article  CAS  Google Scholar 

  46. Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1–16 (1980).

    Article  CAS  Google Scholar 

  47. Esnouf, M. P., Gainey, A. I., Hill, H. A. O. & Thornalley, P. J. in Inflammatory Diseases and Copper: The Metabolic and Therapeutic Roles of Copper and Other Essential Metalloelements in Humans (ed. Sorenson, J. R. J.) 209–220 (Humana Press, 1982). https://doi.org/10.1007/978-1-4612-5829-2_20

  48. Makino, K. et al. An artifact in the ESR spectrum obtained by spin trapping with DMPO. Free Radic. Res. Commun. 6, 19–28 (1989).

    Article  CAS  Google Scholar 

  49. Fujimori, K. et al. Chemiluminescence of Cypridina luciferin analogues. Part 1. Effect of pH on rates of spontaneous autoxidation of CLA in aqueous buffer solutions. J. Chem. Soc. Perkin Trans. 2, 2405–2409 (1993).

  50. Magalhães, C. M., Esteves da Silva, J. C. G. & Pinto da Silva, L. Comparative study of the chemiluminescence of coelenterazine, coelenterazine-e and Cypridina luciferin with an experimental and theoretical approach. J. Photochem. Photobiol., B. 190, 21–31 (2019).

    Article  Google Scholar 

  51. Lourenço, J. M., Esteves da Silva, J. C. G. & Pinto da Silva, L. Combined experimental and theoretical study of Coelenterazine chemiluminescence in aqueous solution. J. Lumin. 194, 139–145 (2018).

    Article  Google Scholar 

  52. Hori, K., Wampler, J. E., Matthews, J. C. & Cormier, M. J. Bioluminescence of Renilla reniformis. XIII. Identification of the product excited states during the chemiluminescent and bioluminescent oxidation of Renilla (sea pansy) luciferin and certain of its analogs. Biochemistry 12, 4463–4468 (1973).

    Article  CAS  Google Scholar 

  53. Imai, Y. et al. Fluorescence properties of phenolate anions of coelenteramide analogues: the light-emitter structure in aequorin bioluminescence. J. Photochem. Photobiol. Chem. 146, 95–107 (2001).

    Article  CAS  Google Scholar 

  54. Li, Z.-S., Zhao, X., Zou, L.-Y. & Ren, A.-M. The dynamics simulation and quantum calculation investigation about luminescence mechanism of coelenteramide. Photochem. Photobiol. 89, 849–855 (2013).

    Article  CAS  Google Scholar 

  55. Liu, Z.-J. et al. Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state. Proc. Natl Acad. Sci. USA 103, 2570–2575 (2006).

    Article  CAS  Google Scholar 

  56. Inouye, S. et al. Chiral deaza-coelenterazine analogs for probing a substrate-binding site in the Ca2+-binding photoprotein aequorin. PLoS ONE 16, e0251743 (2021).

    Article  CAS  Google Scholar 

  57. Tessler, M. et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci. Rep. 10, 17724 (2020).

    Article  CAS  Google Scholar 

  58. Delroisse, J. et al. Fine structure of the luminous spines and luciferase detection in the brittle star Amphiura filiformis. Zool. Anz. 269, 1–12 (2017).

    Article  Google Scholar 

  59. Stepanyuk, G. A. et al. Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein. Proteins 74, 583–593 (2009).

    Article  CAS  Google Scholar 

  60. Titushin, M. S., Feng, Y., Lee, J., Vysotski, E. S. & Liu, Z.-J. Protein-protein complexation in bioluminescence. Protein Cell 2, 957–972 (2011).

    Article  CAS  Google Scholar 

  61. Ward, W. W. & Cormier, M. J. Energy transfer via protein-protein interaction in Renilla bioluminescence. Photochem. Photobiol. 27, 389–396 (1978).

    Article  CAS  Google Scholar 

  62. Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  63. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  64. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  65. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  66. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  67. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  68. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. Publ. Protein Soc. 27, 293–315 (2018).

    Article  CAS  Google Scholar 

  69. PyMOL. PyMOL Molecular Graphics System v. 2.0 (Schrödinger LLC).

  70. wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).

    Article  Google Scholar 

  71. Schomburg, K. T., Wetzer, L. & Rarey, M. Interactive design of generic chemical patterns. Drug Discov. Today 18, 651–658 (2013).

    Article  CAS  Google Scholar 

  72. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  Google Scholar 

  73. MATLAB (The Mathworks Inc., 2015).

  74. Krieger, E. & Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 36, 996–1007 (2015).

    Article  CAS  Google Scholar 

  75. Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2020).

    Article  Google Scholar 

  76. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Czech Science Foundation (grant no. GA22-09853S) and the Czech Ministry of Education (INBIO grant nos. CZ.02.1.01/0.0/0.0/16_026/0008451, RECETOX RI LM2018121 and e-INFRA LM2018140). This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant nos. TEAMING 857560 and Sinfonia 814418) and the Marie Sklodowska-Curie Action (grant no. 792772). M.M. acknowledges financial support from GAMU of the Masaryk University (grant no. MUNI/H/1561/2018) and M.T. is a Brno PhD Talent Scholarship holder funded by the Brno City Municipality. CIISB research infrastructure project (grant no. LM2018127) is acknowledged for financial support of the measurements at Biomolecular Interactions and Crystallization Core Facility. P.C. acknowledges research support from VISTEC, TSRI and the NSRF via the Programme Management Unit for Human Resources & Institutional Development, Research and Innovation grant no. B05F640089 and Kasikorn Bank. P.N. acknowledges European Research Council grant (no. 714850) under the European Union´s Horizon 2020 research and innovation programme. G.G. acknowledges a PhD fellowship from the University of Paris Descartes, Sorbonne Paris City. The design and synthesis of azaCTZ also benefited from the Valoexpress funding calls of the Institut Pasteur. The crystallographic experiments were performed using the PXIII beamline at the Swiss Light Source (SLS) in Villigen (Switzerland). We are grateful to the members of the SLS synchrotron for the use of their beamline and help during data collection.

Author information

Authors and Affiliations

Authors

Contributions

R.B., G.G. and Y.L.J. designed, synthesized and characterized azaCTZ. A.S., M.S. and M.M. constructed and cloned DNA mutants and produced all recombinant proteins. D.P., A.S. and Z.P. performed luciferase and steady-state kinetics assays. A.S. and M.M. performed cocrystallization experiments, collected X-ray data and solved protein–ligand structures. M.T. and Z.P. carried out high-performance liquid chromatography experiments. V.T.S., A.S., M.T., M.M. and P.N. conducted EPR experiments. M.T. and Z.P. performed oxygen-free assays and spectral experiments. G.P.P., J.D. and D.B. performed and analysed molecular dynamics simulations. P.C. contributed to experimental design and data interpretation. M.M., Z.P. and J.D. designed the study and contributed to data interpretation. All authors contributed to the writing of the manuscript and preparation of tables and figures.

Corresponding authors

Correspondence to Zbynek Prokop or Martin Marek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Naohiro Kato, Per-Olof Syren, Roberto Steiner, Anderson Garbuglio Oliveira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Notes 1–3, Tables 1–8 and nuclear magnetic resonance spectra.

Reporting Summary

Supplementary Data

Source data for all relevant Supplementary Figures.

Source data

Source Data Fig. 1

Raw data for Fig.1c,d.

Source Data Fig. 4

Raw data and source data used for graph plotting.

Source Data Fig. 5

Raw data and source data used for graph plotting.

Source Data Fig. 6

Raw data and source data used for graph plotting.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenkmayerova, A., Toul, M., Pluskal, D. et al. Catalytic mechanism for Renilla-type luciferases. Nat Catal 6, 23–38 (2023). https://doi.org/10.1038/s41929-022-00895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00895-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research