Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis

Abstract

Electrochemical carbon dioxide reduction is a potential pathway for sustainable production of fuels and chemicals. However, the detailed catalytic mechanism in cells using high-current gas diffusion electrodes remains uncertain. Here we use proton-transfer-reaction time-of-flight mass spectrometry (PTR–TOF–MS) to perform operando analysis of intermediates and products generated by electrochemical carbon dioxide reduction in gas-diffusion-electrode-based flow cells with copper-based electrocatalysts. PTR–TOF–MS allows for sensitive detection of C1–C4 minor and major intermediates and products, measurement of their 13C isotope composition and precise identification of onset potentials. We find that formaldehyde and acetaldehyde are not the major intermediates for formation of methanol and ethanol/ethylene, respectively, and that propionaldehyde reduction is on the major pathway for 1-propanol formation. Interestingly, the discrimination against 13C in the reaction products is substantially larger than for biological CO2 fixation in photosynthesis and Fischer–Tropsch synthesis of hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GDE and operando set-up.
Fig. 2: Identification of intermediates and products.
Fig. 3: Major formation pathways of C1 products.
Fig. 4: Operando measurement of C2 and C3 products.
Fig. 5: 13C fractionation in C2 and C3 products.
Fig. 6: Major formation pathways of C2 products.

Similar content being viewed by others

Data availability

The data and analyses for the figures in the main part of the manuscript are openly available at https://doi.org/10.5281/zenodo.7047052. All data in the study are available from the corresponding authors upon reasonable request.

References

  1. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  Google Scholar 

  2. De Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  3. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  4. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article  CAS  Google Scholar 

  5. Kovalev, M. K., Ren, H., Zakir Muhamad, M., Ager, J. W. & Lapkin, A. A. Minor product polymerization causes failure of high-current CO2-to-ethylene electrolyzers. ACS Energy Lett. 7, 599–601 (2022).

    Article  CAS  Google Scholar 

  6. Rangarajan, S., Maravelias, C. T. & Mavrikakis, M. Sequential-optimization-based framework for robust modeling and design of heterogeneous catalytic systems. J. Phys. Chem. C 121, 25847–25863 (2017).

    Article  CAS  Google Scholar 

  7. Yang, Y., Mims, C. A., Mei, D., Peden, C. H. & Campbell, C. T. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: the source of C in methanol and the role of water. J. Catal. 298, 10–17 (2013).

    Article  CAS  Google Scholar 

  8. Pander, J. E. III, Ren, D. & Yeo, B. S. Practices for the collection and reporting of electrocatalytic performance and mechanistic information for the CO2 reduction reaction. Catal. Sci. Technol. 7, 5820–5832 (2017).

    Article  CAS  Google Scholar 

  9. Grote, J.-P., Zeradjanin, A. R., Cherevko, S. & Mayrhofer, K. J. Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity. Rev. Sci. Instrum. 85, 104101 (2014).

    Article  Google Scholar 

  10. Schouten, K., Kwon, Y., Van Der Ham, C., Qin, Z. & Koper, M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  11. Clark, E. L., Singh, M. R., Kwon, Y. & Bell, A. T. Differential electrochemical mass spectrometer cell design for online quantification of products produced during electrochemical reduction of CO2. Anal. Chem. 87, 8013–8020 (2015).

    Article  CAS  Google Scholar 

  12. Schouten, K. J. P., Qin, Z., Pérez Gallent, E. & Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    Article  CAS  Google Scholar 

  13. Tsang, C. F. et al. Potential-dependent adsorption of CO and its low-overpotential reduction to CH3CH2OH on Cu (511) surface reconstructed from Cu (pc): operando studies by seriatim STM-EQCN-DEMS. J. Electrochem. Soc. 165, J3350 (2018).

    Article  CAS  Google Scholar 

  14. Bondue, C. J. & Koper, M. T. A DEMS approach for the direct detection of CO formed during electrochemical CO2 reduction. J. Electroanal. Chem. 875, 113842 (2020).

    Article  CAS  Google Scholar 

  15. Lobaccaro, P. et al. Initial application of selected-ion flow-tube mass spectrometry to real-time product detection in electrochemical CO2 reduction. Energy Technol. 6, 110–121 (2018).

    Article  CAS  Google Scholar 

  16. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article  CAS  Google Scholar 

  17. Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    Article  CAS  Google Scholar 

  18. Zardin, E., Tyapkova, O., Buettner, A. & Beauchamp, J. Performance assessment of proton-transfer-reaction time-of-flight mass spectrometry (PTR–TOF–MS) for analysis of isobaric compounds in food-flavour applications. Lebensm. Wiss. Technol. 56, 153–160 (2014).

    Article  CAS  Google Scholar 

  19. Yuan, B. et al. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chem. Rev. 117, 13187–13229 (2017).

    Article  CAS  Google Scholar 

  20. Jordan, A. et al. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR–TOF–MS). Int. J. Mass spectrom. 286, 122–128 (2009).

    Article  CAS  Google Scholar 

  21. O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).

    Article  Google Scholar 

  22. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  23. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  24. Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).

    Article  CAS  Google Scholar 

  25. Taran, Y. A., Kliger, G. A. & Sevastianov, V. S. Carbon isotope effects in the open-system Fischer–Tropsch synthesis. Geochim. Cosmochim. Acta 71, 4474–4487 (2007).

    Article  CAS  Google Scholar 

  26. Giri, S. D. & Sarkar, A. Electrochemical study of bulk and monolayer copper in alkaline solution. J. Electrochem. Soc. 163, H252–H259 (2016).

    Article  CAS  Google Scholar 

  27. Choi, J. et al. Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition. Chem. Eng. Sci. 299, 37–44 (2016).

    Article  CAS  Google Scholar 

  28. Lum, Y. & Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018).

    Article  CAS  Google Scholar 

  29. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  Google Scholar 

  30. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  31. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  32. Wilson, P. F., Freeman, C. G. & McEwan, M. J. Reactions of small hydrocarbons with H3O+, O2+ and NO+ ions. Int. J. Mass Spectrom. 229, 143–149 (2003).

    Article  CAS  Google Scholar 

  33. Myher, J. & Harrison, A. Some observations on the ion-molecule reactions in ethylene. Can. J. Chem. 46, 101–109 (1968).

    Article  CAS  Google Scholar 

  34. Choi, M., Bong, S., Kim, J. W. & Lee, J. Formation of 1-butanol from CO2 without *CO dimerization on a phosphorus-rich copper cathode. ACS Energy Lett. 6, 2090–2095 (2021).

    Article  CAS  Google Scholar 

  35. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    Article  CAS  Google Scholar 

  36. Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article  CAS  Google Scholar 

  37. Cheng, T., Xiao, H. & Goddard, W. A. III Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu (100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 6, 4767–4773 (2015).

    Article  CAS  Google Scholar 

  38. Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 125, 2519–2522 (2013).

    Article  Google Scholar 

  39. Huang, Y., Chen, Y., Cheng, T., Wang, L.-W. & Goddard, W. A. III Identification of the selective sites for electrochemical reduction of CO to C2+ products on copper nanoparticles by combining reactive force fields, density functional theory, and machine learning. ACS Energy Lett. 3, 2983–2988 (2018).

    Article  CAS  Google Scholar 

  40. Lum, Y. & Ager, J. W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

    Article  CAS  Google Scholar 

  41. Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    Article  CAS  Google Scholar 

  42. Poulson, S. R. & Drever, J. I. Stable isotope (C, Cl, and H) fractionation during vaporization of trichloroethylene. Environ. Sci. Technol. 33, 3689–3694 (1999).

    Article  CAS  Google Scholar 

  43. Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 128, 1472–1476 (2016).

    Article  Google Scholar 

  44. Zhang, X. & Zhou, Z. Perspective on theoretical models for CO2 electrochemical reduction. J. Phys. Chem. C 126, 3820–3829 (2022).

    Article  CAS  Google Scholar 

  45. Ren, D., Wong, N. T., Handoko, A. D., Huang, Y. & Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2016).

    Article  CAS  Google Scholar 

  46. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 1–9 (2018).

    Article  Google Scholar 

  47. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34 (2019).

    Article  Google Scholar 

  48. Goericke, R. & Fry, B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochem. Cycles 8, 85–90 (1994).

    Article  CAS  Google Scholar 

  49. Lu, X. & Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 1–7 (2015).

    Article  CAS  Google Scholar 

  50. Salazar Gómez, J. I. et al. Elucidation of artefacts in proton transfer reaction time-of-flight mass spectrometers. J. Mass Spectrom. 54, 987–1002 (2019).

    Article  Google Scholar 

  51. Fleisher, A. J. et al. Absolute 13C/12C isotope amount ratio for Vienna PeeDee Belemnite from infrared absorption spectroscopy. Nat. Phys. 17, 889–893 (2021).

    Article  CAS  Google Scholar 

  52. Millard, P. et al. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 35, 4484–4487 (2019).

    Article  CAS  Google Scholar 

  53. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps. Anal. Chem. 89, 5940–5948 (2017).

    Article  CAS  Google Scholar 

  54. Tcherkez, G., Mahé, A. & Hodges, M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 16, 499–506 (2011).

    CAS  Google Scholar 

  55. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  56. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  58. Methfessel, M. & Paxton, A. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  59. Nørskov, J. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  60. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme through the eCO2EP project operated by Cambridge Centre for Advanced Research and Education in Singapore (CARES) and the Berkeley Education Alliance for Research in Singapore (BEARS). We thank E. Hartungen of IONICON for valuable technical advice on the operation of the PTR-MS instrument.

Author information

Authors and Affiliations

Authors

Contributions

H.R. conceptualized the study, developed the methodology and software, performed experiments, analysed and validated data, wrote the original draft of manuscript and revised the manuscript. M.K. developed the methodology, performed experiments, analysed and validated data and reviewed the manuscript. Z.W. performed DFT calculations with assistance from H.M. and wrote the DFT parts of the manuscript. M.Z.M., Y.S., L.S., J.W. and W.Y. assisted in experiments. S.R. contributed to mechanism analysis. A.A.L. acquired funding, supervised the project and reviewed the manuscript. J.W.A. conceptualized the study, acquired funding, developed the methodology and software, administered the project, supervised the project and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Alexei A. Lapkin or Joel W. Ager.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Leanne Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–28 and Tables 1–10.

Supplementary Data 1

Atomic coordinates of intermediates and products used in DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Kovalev, M., Weng, Z. et al. Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis. Nat Catal 5, 1169–1179 (2022). https://doi.org/10.1038/s41929-022-00891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00891-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing