Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thioester-mediated biocatalytic amide bond synthesis with in situ thiol recycling

Abstract

The activation of carboxylic acids to thioesters plays an important role in biology. However, biochemical studies and biotechnological applications are hampered by a general lack of access to thioesters, especially those based on Coenzyme A (CoA-SH). Here we show a generic thioester recycling enzyme by exploiting the promiscuous activity of a carboxylic acid reductase (CARsr). The adenylation domain of CARsr (CARsr-A) catalyses the conversion of a wide range of carboxylic acids to acyl-S-Coenzyme A and other thioesters in good yields. CARsr-A was used in situ as part of a recycling system to regenerate thioesters for acyl-S-Coenzyme A-dependent enzymes in one-pot reactions. This concept of thioester recycling is demonstrated with a range of acyltransferases that allow the formation of diverse amides and the non-native acylation of lysine side chains in a histone-derived peptide using the epigenetic writer, lysine acetyltransferase HATp300. Overall, these results establish a generic platform for thioester formation towards amide formation and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and recycling of acyl-S-CoA thioesters using a carboxylic acid reductase A-domain in amide bond formations.
Fig. 2: Identification of CoA-SH binding in CARsr-A and the enzymatic formation of different thioesters.
Fig. 3: A broad range of acyl-S-CoA thioesters is formed by CARsr-A.
Fig. 4: Amide bond formation by combining acyl-S-CoA dependent ATs with thioester regeneration system.
Fig. 5: Acylation of histone peptide H4 (1–20) via the formation of non-native acyl-S-CoA esters.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article, its Supplementary Information, on https://doi.org/10.6084/m9.figshare.21277920.v2 or can be obtained from the corresponding author upon reasonable request.

References

  1. Mordhorst, S. & Andexer, J. N. Round, round we go—strategies for enzymatic cofactor regeneration. Nat. Prod. Rep. 37, 1316–1333 (2020).

    Article  CAS  Google Scholar 

  2. Resnick, S. M. & Zehnder, A. J. B. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl. Environ. Microbiol. 66, 2045–2051 (2000).

    Article  CAS  Google Scholar 

  3. Pollak, A., Baughn, R. L. & Whitesides, G. M. Large-scale enzymatic synthesis with cofactor regeneration: glucose 6-phosphate. J. Am. Chem. Soc. 99, 2366–2367 (1977).

    Article  CAS  Google Scholar 

  4. Liao, C. & Seebeck, F. P. S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat. Catal. 2, 696–701 (2019).

    Article  CAS  Google Scholar 

  5. Hamed, R. B. et al. Stereoselective C–C bond formation catalysed by engineered carboxymethylproline synthases. Nat. Chem. 3, 365–371 (2011).

    Article  CAS  Google Scholar 

  6. Lohans, C. T., Wang, D. Y., Wang, J., Hamed, R. B. & Schofield, C. J. Crotonases: nature’s exceedingly convertible catalysts. ACS Catal. 7, 6587–6599 (2017).

    Article  CAS  Google Scholar 

  7. Tan, Z., Clomburg, J. M., Cheong, S., Qian, S. & Gonzalez, R. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones. Nat. Catal. 3, 593–603 (2020).

    Article  CAS  Google Scholar 

  8. Zhang, X., Li, K., Jones, R. A., Bruner, S. D. & Butcher, R. A. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Proc. Natl Acad. Sci USA 113, 10055–10060 (2016).

    Article  CAS  Google Scholar 

  9. Schwander, T., Von Borzyskowski, L. S., Burgener, S., Cortina, N. S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Article  CAS  Google Scholar 

  10. Walsh, C. T. Biologically generated carbon dioxide: nature’s versatile chemical strategies for carboxy lyases. Nat. Prod. Rep. 37, 100–135 (2020).

    Article  CAS  Google Scholar 

  11. Philpott, H. K., Thomas, P. J., Tew, D., Fuerst, D. E. & Lovelock, S. L. A versatile biosynthetic approach to amide bond formation. Green. Chem. 20, 3426–3431 (2018).

    Article  CAS  Google Scholar 

  12. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article  CAS  Google Scholar 

  13. Mouterde, L. M. M. & Stewart, J. D. Isolation and synthesis of one of the most central cofactors in metabolism: Coenzyme A. Org. Process Res. Dev. 23, 19–30 (2019).

    Article  CAS  Google Scholar 

  14. Starai, V. J. & Escalante-Semerena, J. C. Acetyl-coenzyme A synthetase (AMP forming). Cell. Mol. Life Sci. 61, 2020–2030 (2004).

    Article  CAS  Google Scholar 

  15. Hughes, A. J. & Keatinge-Clay, A. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. Chem. Biol. 18, 165–176 (2011).

    Article  CAS  Google Scholar 

  16. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).

    Article  Google Scholar 

  17. Sofeo, N. et al. Altering the substrate specificity of acetyl-CoA synthetase by rational mutagenesis of the carboxylate binding pocket. ACS Synth. Biol. 8, 1325–1336 (2019).

    Article  CAS  Google Scholar 

  18. Thornburg, C. K., Wortas-Strom, S., Nosrati, M., Geiger, J. H. & Walker, K. D. Kinetically and crystallographically guided mutations of a benzoate CoA Ligase (BadA) elucidate mechanism and expand substrate permissivity. Biochemistry 54, 6230–6242 (2015).

    Article  CAS  Google Scholar 

  19. Contente, M. L., Roura Padrosa, D., Molinari, F. & Paradisi, F. A strategic Ser/Cys exchange in the catalytic triad unlocks an acyltransferase-mediated synthesis of thioesters and tertiary amides. Nat. Catal. 3, 1020–1026 (2020).

    Article  CAS  Google Scholar 

  20. Peter, D. M., Vögeli, B., Cortina, N. S. & Erb, T. J. A chemo-enzymatic road map to the synthesis of CoA esters. Molecules 21, 517 (2016).

    Article  Google Scholar 

  21. Hahn, F., Kandziora, N., Friedrich, S. & Leadlay, P. F. Synthesis of complex intermediates for the study of a dehydratase from borrelidin biosynthesis. Beilstein J. Org. Chem. 10, 634–640 (2014).

    Article  Google Scholar 

  22. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  Google Scholar 

  23. Constable, D. J. C. et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green. Chem. 9, 411–420 (2007).

    Article  CAS  Google Scholar 

  24. Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2, 98–102 (2019).

    Article  CAS  Google Scholar 

  25. Massolo, E., Pirola, M. & Benaglia, M. Amide bond formation strategies: latest advances on a dateless transformation. Eur. J. Org. Chem. 2020, 4641–4651 (2020). vol.

    Article  CAS  Google Scholar 

  26. Petchey, M. et al. The broad aryl acid specificity of the amide bond synthetase mcba suggests potential for the biocatalytic synthesis of amides. Angew. Chem. Int. Ed. 57, 11584–11588 (2018).

    Article  CAS  Google Scholar 

  27. Petchey, M. R., Rowlinson, B., Lloyd, R. C., Fairlamb, I. J. S. & Grogan, G. Biocatalytic synthesis of moclobemide using the amide bond synthetase McbA coupled with an ATP recycling system. ACS Catal. 10, 4659–4663 (2020).

    Article  CAS  Google Scholar 

  28. Lubberink, M. et al. Biocatalytic monoacylation of symmetrical diamines and its application to the synthesis of pharmaceutically relevant amides. ACS Catal. 10, 10005–10009 (2020).

    Article  CAS  Google Scholar 

  29. Lubberink, M. et al. One‐step biocatalytic synthesis of sustainable surfactants by selective amide bond formation. Angew. Chem. Int. Ed. 61, e202205054 (2022).

    Article  CAS  Google Scholar 

  30. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  Google Scholar 

  31. Yang, Y. Y., Ascano, J. M. & Hang, H. C. Bioorthogonal chemical reporters for monitoring protein acetylation. J. Am. Chem. Soc. 132, 3640–3641 (2010).

    Article  CAS  Google Scholar 

  32. Schwarz, A. et al. Cell-free in vitro reduction of carboxylates to aldehydes: with crude enzyme preparations to a key pharmaceutical building block. Biotechnol. J. 16, 2000315 (2021).

    Article  CAS  Google Scholar 

  33. Wood, A. J. L. et al. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Ed. 56, 14498–14501 (2017).

    Article  CAS  Google Scholar 

  34. Pongpamorn, P. et al. Carboxylic acid reductase can catalyze ester synthesis in aqueous environments. Angew. Chem. Int. Ed. 60, 5749–5753 (2021).

    Article  CAS  Google Scholar 

  35. Gahloth, D. et al. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat. Chem. Biol. 13, 975–981 (2017).

    Article  CAS  Google Scholar 

  36. Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  37. Ramsden, J. I. et al. Biocatalytic N-alkylation of amines using either primary alcohols or carboxylic acids via reductive aminase cascades. J. Am. Chem. Soc. 141, 1201–1206 (2019).

    Article  CAS  Google Scholar 

  38. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  39. Nocek, B. P. et al. Structural insights into substrate selectivity and activity of bacterial polyphosphate kinases. ACS Catal. 8, 10746–10760 (2018).

    Article  CAS  Google Scholar 

  40. Back, K. et al. Cloning and characterization of a hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase induced in response to UV-C and wounding from Capsicum annuum. Plant Cell Physiol. 42, 475–481 (2001).

    Article  CAS  Google Scholar 

  41. Sim, E., Abuhammad, A. & Ryan, A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br. J. Pharmacol. 171, 2705 (2014).

    Article  CAS  Google Scholar 

  42. Martin, B. J. E. et al. Transcription shapes genome-wide histone acetylation patterns. Nat. Commun. 12, 210 (2021).

  43. Kollenstart, L. et al. Epigenetics identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Sci. Rep. 11, 1–17 (2021).

    Article  Google Scholar 

  44. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  Google Scholar 

  45. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    Article  CAS  Google Scholar 

  46. Okada, A. K. et al. Lysine acetylation regulates the interaction between proteins and membranes. Nat. Commun. 12, 6466 (2021).

    Article  CAS  Google Scholar 

  47. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  Google Scholar 

  48. Britton, L. M. P. et al. Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics 8, 1101–1113 (2013).

    Article  CAS  Google Scholar 

  49. Chamberlain, L. H., Shipston, M. J. & Gould, G. W. Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biol. 11, 210017 (2021).

    Article  CAS  Google Scholar 

  50. Macpherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020).

    Article  CAS  Google Scholar 

  51. M. Valor, L., Viosca, J., P. Lopez-Atalaya, J. & Barco, A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr. Pharm. Des. 19, 5051–5064 (2013).

    Article  Google Scholar 

  52. Han, Z., Chou, C.-W., Yang, X., Bartlett, M. G. & Zheng, Y. G. Profiling cellular substrates of lysine acetyltransferases GCN5 and p300 with orthogonal labeling and click chemistry. ACS Chem. Biol. 12, 1547–1555 (2017).

    Article  CAS  Google Scholar 

  53. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

  54. Hoyt, E. A., S D Cal, P. M., Oliveira, B. L. & L Bernardes, G. J. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

    Article  CAS  Google Scholar 

  55. He, M. et al. A bioorthogonal turn-on fluorescent strategy for the detection of lysine acetyltransferase activity. Chem. Commun. 54, 5594–5597 (2018).

    Article  CAS  Google Scholar 

  56. Yang, C. et al. Labeling lysine acetyltransferase substrates with engineered enzymes and functionalized cofactor surrogates. J. Am. Chem. Soc. 135, 7791–7794 (2013).

    Article  CAS  Google Scholar 

  57. Henry, R. A., Kuo, Y. M. & Andrews, A. J. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52, 5746–5759 (2013).

    Article  CAS  Google Scholar 

  58. Kaimori, J. Y. et al. Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci. Rep. 6, 24318 (2016).

  59. Smith, K. T. & Workman, J. L. Introducing the acetylome. Nat. Biotechnol. 27, 917–919 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the EPSRC, BBSRC and AstraZeneca plc under the Prosperity Partnership EP/S005226/1. M.L. thanks CoEBio3 for funding for a studentship. We are grateful to W. Goundry for helpful discussions and thank R. Sung and R. Spiess for support with the MS analyses.

Author information

Authors and Affiliations

Authors

Contributions

S.L.F., N.J.T, M.A.H., K.M. and F.F. managed and supervised the project. S.L.F, N.J.T., C.S. and M.A.H. devised the concept. C.S. performed the cloning, biocatalyst production, enzyme assays and thioester scope studies. C.S. undertook and optimized the cascade reactions and screenings. L.R.P. and A.A. carried out the histone acylation assays. Y.Y. performed the bioinformatic studies. C.S. synthesized the amide products, and C.S. and A.A. performed the purification of the products. C.S. and M.L. designed the A-domain and did the initial activity tests. C.S. and R.S.H. carried out the enzyme purifications. C.S., S.L.F., L.R.P., N.J.T. and Y.Y. wrote the manuscript and generated the figures.

Corresponding authors

Correspondence to Christian Schnepel or Sabine L. Flitsch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Francesca Paradisi, Wei Niu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1-25, Tables 1–3 and methods.

Reporting Summary

Supplementary Data 1

Sequences of carboxylic acid reductases from homology search for SSN calculation.

Supplementary Data 2

Docking model of CoA-SH into CARsr-A.

Supplementary Data 3

Docking model of pantetheine into CARsr-A.

Supplementary Data 4

Docking model of SNAC into CARsr-A.

Supplementary Data 5

Amino acid sequences of enzymes used for this study.

Supplementary Data 6

Vector construct encoding A-domain of carboxylic acid reductase from Segniliparus rugosus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnepel, C., Pérez, L.R., Yu, Y. et al. Thioester-mediated biocatalytic amide bond synthesis with in situ thiol recycling. Nat Catal 6, 89–99 (2023). https://doi.org/10.1038/s41929-022-00889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00889-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing