Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water

Abstract

The direct reduction of inert planar arenes and heteroarenes with visible light remains rarely explored, as the energy of one visible-light photon is unable to overcome the stabilization of aromatics. Here we report a system based on boron carbonitride semiconductor, which can reduce arenes and heteroarenes in water under blue light irradiation. The system features the advantage of low-cost, high-efficiency, facile separation, benign environmental profile and broad substituent tolerance. The methodology can be extended to late-stage functionalization and/or deuteration of drugs, hormones and axially chiral compounds with conserved chirality. Moreover, gram-scale synthesis is successfully implemented with catalyst recycling. Mechanistic investigations support a consecutive blue-light-induced energy and electron transfer process, which accumulates sufficient energy to reduce arenes to arene anions by absorbing two photons successively. The metal-free system introduces a simple and sustainable reactivity mode for semiconductor photocatalysts and enriches the chemical toolkit for a class of demanding and valuable organic transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for Birch-type reductions.
Fig. 2: The morphological and structural characterization of BCN.
Fig. 3: Photocatalytic performance of BCN and gram-scale reaction for the reduction of 1a.
Fig. 4: Mechanism investigations.
Fig. 5: Studies on the reaction mechanism and extension of the reaction system.
Fig. 6: Schematic diagram of mechanism.

Similar content being viewed by others

Data availability

The data generated in this study are provided in the article and the Supplementary Information file or are available from the corresponding author upon reasonable request. Atomic coordinates of the optimized computational models are provided in Supplementary Data 1. Source data are provided with this paper.

References

  1. Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    Article  CAS  Google Scholar 

  2. Zimmerman, H. E. A mechanistic analysis of the Birch reduction. Acc. Chem. Res. 45, 164–170 (2012).

    Article  CAS  Google Scholar 

  3. Burrows, J., Kamo, S. & Koide, K. Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science 374, 741–746 (2021).

    Article  CAS  Google Scholar 

  4. Birch, A. J. The Birch reduction in organic synthesis. Pure Appl. Chem. 68, 553–556 (1996).

    Article  CAS  Google Scholar 

  5. Hook, J. M. & Mander, L. N. Recent developments in the Birch reduction of aromatic-compounds—applications to the synthesis of natural products. Nat. Prod. Rep. 3, 35–85 (1986).

    Article  CAS  Google Scholar 

  6. Benkeser, R. A., Robinson, R. E., Sauve, D. M. & Thomas, O. H. Reduction of organic compounds by lithium in low molecular weight amines. I. Selective reduction of aromatic hydrocarbons to monoolefins. J. Am. Chem. Soc. 77, 3230–3233 (1955).

    Article  CAS  Google Scholar 

  7. Lei, P. et al. A practical and chemoselective ammonia-free Birch reduction. Org. Lett. 20, 3439–3442 (2018).

    Article  CAS  Google Scholar 

  8. Nandi, P., Dye, J. L. & Jackson, J. E. Birch reductions at room temperature with alkali metals in silica gel (Na2K-SG(I). J. Org. Chem. 74, 5790–5792 (2009).

    Article  CAS  Google Scholar 

  9. Costanzo, M. J., Patel, M. N., Petersen, K. A. & Vogt, P. F. Ammonia-free Birch reductions with sodium stabilized in silica gel, Na-SG(I). Tetrahedron Lett. 50, 5463–5466 (2009).

    Article  CAS  Google Scholar 

  10. Szostak, M., Spain, M. & Procter, D. J. Determination of the effective redox potentials of SmI2, SmBr2, SmCl2, and their complexes with water by reduction of aromatic hydrocarbons. Reduction of anthracene and stilbene by samarium(II) iodide–water complex. J. Org. Chem. 79, 2522–2537 (2014).

    Article  CAS  Google Scholar 

  11. Donohoe, T. J. & Thomas, R. E. The partial reduction of electron-deficient pyrroles: procedures describing both Birch (Li/NH3) and ammonia-free (Li/DBB) conditions. Nat. Protocols 2, 1888–1895 (2007).

    Article  CAS  Google Scholar 

  12. Il Yoo, B., Kim, Y. J., You, Y., Yang, J. W. & Kim, S. W. Birch reduction of aromatic compounds by inorganic electride [Ca2N]·+e in an alcoholic solvent: an analogue of solvated electrons. J. Org. Chem. 83, 13847–13853 (2018).

  13. Urban, S., Beiring, B., Ortega, N., Paul, D. & Glorius, F. Asymmetric hydrogenation of thiophenes and benzothiophenes. J. Am. Chem. Soc. 134, 15241–15244 (2012).

    Article  CAS  Google Scholar 

  14. Zhang, J. W., Chen, F., He, Y. M. & Fan, Q. H. Asymmetric ruthenium-catalyzed hydrogenation of 2,6-disubstituted 1,5-naphthyridines: access to chiral 1,5-diaza-cis-decalins. Angew. Chem. Int. Ed. 54, 4622–4625 (2015).

    Article  CAS  Google Scholar 

  15. Kuwano, R., Sato, K., Kurokawa, T., Karube, D. & Ito, Y. Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles. J. Am. Chem. Soc. 122, 7614–7615 (2000).

    Article  CAS  Google Scholar 

  16. Feiertag, P., Albert, M., Nettekoven, U. & Spindler, F. Asymmetric homogeneous hydrogenation of 2,5-disubstituted furans. Org. Lett. 8, 4133–4135 (2006).

    Article  CAS  Google Scholar 

  17. Duan, Y. et al. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies. J. Am. Chem. Soc. 136, 7688–7700 (2014).

    Article  CAS  Google Scholar 

  18. Chen, Z. P., Chen, M. W., Shi, L., Yu, C. B. & Zhou, Y. G. Pd-catalyzed asymmetric hydrogenation of fluorinated aromatic pyrazol-5-ols via capture of active tautomers. Chem. Sci. 6, 3415–3419 (2015).

    Article  CAS  Google Scholar 

  19. Kuwano, R., Hashiguchi, Y., Ikeda, R. & Ishizuka, K. Catalytic asymmetric hydrogenation of pyrimidines. Angew. Chem. Int. Ed. 54, 2393–2396 (2015).

    Article  CAS  Google Scholar 

  20. Chang, M. X. et al. Asymmetric hydrogenation of pyridinium salts with an iridium phosphole catalyst. Angew. Chem. Int. Ed. 53, 12761–12764 (2014).

    Article  CAS  Google Scholar 

  21. Giustra, Z. X., Ishibashi, J. S. A. & Liu, S. Y. Homogeneous metal catalysis for conversion between aromatic and saturated compounds. Coord. Chem. Rev. 314, 134–181 (2016).

    Article  CAS  Google Scholar 

  22. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  Google Scholar 

  23. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  Google Scholar 

  24. Marzo, L., Pagire, S. K., Reiser, O. & Kӧnig, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  25. Huang, H. et al. Visible-light-driven anti-Markovnikov hydrocarboxylation of acrylates and styrenes with CO2. CCS Chem. 3, 1746–1756 (2021).

    Article  CAS  Google Scholar 

  26. Zhou, C. et al. Metal-free, redox-neutral, site-selective access to heteroarylamine via direct radical–radical cross-coupling powered by visible light photocatalysis. J. Am. Chem. Soc. 142, 16805–16813 (2020).

    Article  CAS  Google Scholar 

  27. Luo, Z. S. et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat. Commun. 13, 2230 (2022).

    Article  CAS  Google Scholar 

  28. McCallum, T., Pitre, S. P., Morin, M., Scaiano, J. C. & Barriault, L. The photochemical alkylation and reduction of heteroarenes. Chem. Sci. 8, 7412–7418 (2017).

    Article  CAS  Google Scholar 

  29. Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

    Article  CAS  Google Scholar 

  30. Giedyk, M. et al. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat. Catal. 3, 40–47 (2020).

    Article  CAS  Google Scholar 

  31. Zeman, C. J., Kim, S., Zhang, F. & Schanze, K. S. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J. Am. Chem. Soc. 142, 2204–2207 (2020).

    Article  CAS  Google Scholar 

  32. Xu, J. H. et al. Unveiling extreme photoreduction potentials of donor–acceptor cyanoarenes to access aryl radicals from aryl chlorides. J. Am. Chem. Soc. 143, 13266–13273 (2021).

    Article  CAS  Google Scholar 

  33. Cole, J. P. et al. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  Google Scholar 

  34. Chatterjee, A. & Kӧnig, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    Article  CAS  Google Scholar 

  35. Huang, C. J. et al. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015).

    Article  Google Scholar 

  36. Luo, Z. S., Fang, Y. X., Zhou, M. & Wang, X. C. A borocarbonitride ceramic aerogel for photoredox catalysis. Angew. Chem. Int. Ed. 58, 6033–6037 (2019).

    Article  CAS  Google Scholar 

  37. Fang, Y. X. et al. Vertically aligned 2D carbon doped boron nitride nanofilms for photoelectrochemical water oxidation. J. Mater. Chem. A 8, 13059–13064 (2020).

    Article  CAS  Google Scholar 

  38. Hao, Y. Z., Wang, S. Z., Shao, Y. L., Wu, Y. Z. & Miao, S. D. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 10, 1902836 (2020).

    Article  CAS  Google Scholar 

  39. Zhang, L. et al. Tailoring the defects of two-dimensional borocarbonitride nanomesh for high energy density micro-supercapacitor. Energy Storage Mater. 42, 430–437 (2021).

    Article  Google Scholar 

  40. Zheng, M. F., Cai, W. C., Fang, Y. X. & Wang, X. C. Nanoscale boron carbonitride semiconductors for photoredox catalysis. Nanoscale 12, 3593–3604 (2020).

    Article  CAS  Google Scholar 

  41. Fang, Y. X. & Wang, X. C. Metal-free boron-containing heterogeneous catalysts. Angew. Chem. Int. Ed. 56, 15506–15518 (2017).

    Article  CAS  Google Scholar 

  42. Zhang, X. F. et al. Methanol conversion on borocarbonitride catalysts: identification and quantification of active sites. Sci. Adv. 6, eaba5778 (2020).

    Article  CAS  Google Scholar 

  43. Guo, F. S. et al. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 56, 8231–8235 (2017).

    Article  CAS  Google Scholar 

  44. Zheng, M. F., Shi, J. L., Yuan, T. & Wang, X. C. Metal-free dehydrogenation of N-heterocycles by ternary h-BCN nanosheets with visible light. Angew. Chem. Int. Ed. 57, 5487–5491 (2018).

    Article  CAS  Google Scholar 

  45. Shi, J. L., Yuan, T., Zheng, M. F. & Wang, X. C. Metal-free heterogeneous semiconductor for visible-light photocatalytic decarboxylation of carboxylic acids. ACS Catal. 11, 3040–3047 (2021).

    Article  CAS  Google Scholar 

  46. Yuan, T., Zheng, M. F., Antonietti, M. & Wang, X. C. Ceramic boron carbonitrides for unlocking organic halides with visible light. Chem. Sci. 12, 6323–6332 (2021).

    Article  CAS  Google Scholar 

  47. Yuan, T. et al. Semi-hydrogenation of alkynes by a tandem photoredox system free of noble metal. CCS Chem. 4, 2597–2603 (2022).

    Article  CAS  Google Scholar 

  48. Wang, H. et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 28, 6940–6945 (2016).

    Article  CAS  Google Scholar 

  49. Chakraborty, S., Brennessel, W. W. & Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 136, 8564–8567 (2014).

    Article  CAS  Google Scholar 

  50. Zhao, D. B. & Glorius, F. Enantioselective hydrogenation of isoquinolines. Angew. Chem. Int. Ed. 52, 9616–9618 (2013).

    Article  CAS  Google Scholar 

  51. Ye, Z. S. et al. Enantioselective iridium-catalyzed hydrogenation of 1- and 3-substituted isoquinolinium salts. Angew. Chem. Int. Ed. 52, 3685–3689 (2013).

    Article  CAS  Google Scholar 

  52. Wen, J. L., Tan, R. C., Liu, S. D., Zhao, Q. Y. & Zhang, X. M. Strong Brønsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh–thiourea chiral phosphine complex via anion binding. Chem. Sci. 7, 3047–3051 (2016).

    Article  CAS  Google Scholar 

  53. Islangulov, R. R. & Castellano, F. N. Photochemical upconversion: anthracene dimerization sensitized to visible light by a Ru-II chromophore. Angew. Chem. Int. Ed. 45, 5957–5959 (2006).

    Article  CAS  Google Scholar 

  54. Das, S. et al. Photocatalytic (het)arylation of C(sp3)–H bonds with carbon nitride. ACS Catal. 11, 1593–1603 (2021).

    Article  CAS  Google Scholar 

  55. Savateev, A. et al. Potassium poly(heptazine imide): transition metal-free solid-state triplet sensitizer in cascade energy transfer and [3+2]-cycloadditions. Angew. Chem. Int. Ed. 59, 15061–15068 (2020).

    Article  CAS  Google Scholar 

  56. Liu, X. F. et al. Facile synthetic strategy for efficient and multi-color fluorescent BCNO nanocrystals. Chem. Commun. 21, 4073–4075 (2009).

    Article  Google Scholar 

  57. Liu, X. F. et al. BCNO-based long-persistent phosphor. J. Electrochem. Soc. 156, 81–84 (2009).

    Article  Google Scholar 

  58. Liu, X. F. et al. Spectroscopic investigation on BCNO-based phosphor: photoluminescence and long persistent phosphorescence. J. Phys. D 42, 215409 (2009).

    Article  Google Scholar 

  59. Kolodiazhnyi, T. & Golberg, D. Paramagnetic defects in boron nitride nanostructures. Chem. Phys. Lett. 413, 47–51 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Technologies R & D Program of China (2018YFA0209301, X.W.), the National Natural Science Foundation of China (22071026, M.Z.; U1905214, X.W.; 22032002, X.W.; 21961142019, X.W. and 21973014, W.L.), the Chang Jiang Scholars Program of China (T2016147, X.W.) and the 111 Project (D16008, X.W.).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and M.Z. conceived and directed the project. T.Y. and M.Z. designed the experiments. T.Y., L.S., Z.W. and R.W. performed and analysed the experiments. X.C. and W.L. carried out the density functional theory calculations. T.Y., M.Z. and X.W. prepared the manuscript. All the authors contributed to the analysis and interpretation of the data and commented on the final draft of the manuscript.

Corresponding authors

Correspondence to Meifang Zheng or Xinchen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Pei Yuin Keng, Jie An and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–3, Figs. 1–33, Tables 1–8 and references.

Supplementary Data

Atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 2

SEM, TEM and EELS mapping images, XRD pattern and high-resolution XPS spectra.

Source Data Fig. 3

Activity, AQE, UV-Vis DRS and FTIR spectra.

Source Data Fig. 4

Mott-Schottky plots, UV-Vis absorption, steady-state fluorescence, phosphorescence (PH), time-resolved PH decay, photocurrent and EPR spectra. Activity with different irradiation density of light.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Sun, L., Wu, Z. et al. Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water. Nat Catal 5, 1157–1168 (2022). https://doi.org/10.1038/s41929-022-00886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00886-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing