Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation

Subjects

Abstract

Multicarbon alcohols produced by electrochemical CO2 reduction (CO2RR) are attractive alternatives to fossil fuels; however, the selectivity towards alcohols in CO2RR remains low, a result of competing hydrocarbon (that is, ethylene) production. Here we report on Cu catalysts decorated with different alkaline earth metal oxides (MOs). We found that BaO delivers a Faradaic efficiency of 61% towards C2+ alcohols. At an industry-relevant current density of 400 mA cm−2, the ratio of alcohols to hydrocarbon reached 3:1. Mechanistic studies, including in operando X-ray absorption spectroscopy, in situ Raman spectroscopy and density functional theory calculations, suggested that the increased selectivity towards alcohols originates from sites at the MO/Cu interface. Furthermore, computational studies indicated that the incorporation of MOs favours a hydroxy-containing C2 intermediate (*HCCHOH) over the hydrocarbon intermediate (*HCC) at interfacial Cu sites on the path to alcohol products. We also propose that the relative bond strengths of Cu–COH and C–OH correlate with the selectivity for alcohol over hydrocarbon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the as-prepared BaO/Cu electrocatalysts.
Fig. 2: CO2RR performance of the BaO/Cu catalyst.
Fig. 3: Surface states of the BaO/Cu catalyst under CO2RR conditions.
Fig. 4: DFT calculations of hydrogenation reactions and design principle.

Similar content being viewed by others

Data availability

All data can be found in the public GitHub repository (https://github.com/onealshu/CO2_alcohol_BaOCu.git) or from the corresponding authors upon reasonable request.

References

  1. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  2. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  3. Shih, C. F., Zhang, T., Li, J. & Bai, C. Powering the future with liquid sunshine. Joule 2, 1925–1949 (2018).

    Article  CAS  Google Scholar 

  4. Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    Article  CAS  Google Scholar 

  5. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  Google Scholar 

  6. Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  CAS  Google Scholar 

  7. Li, Y. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Article  CAS  Google Scholar 

  8. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  9. Parastaev, A. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020).

    Article  CAS  Google Scholar 

  10. Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019).

    Article  CAS  Google Scholar 

  11. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  12. Le, M. et al. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158, E45 (2011).

    Article  CAS  Google Scholar 

  13. Lin, S.-C. et al. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11, 3525 (2020).

    Article  CAS  Google Scholar 

  14. Gong, J. et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. J. Am. Chem. Soc. 134, 13922–13925 (2012).

    Article  CAS  Google Scholar 

  15. Angamuthu, R., Byers, P., Lutz, M., Spek, A. L. & Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 327, 313–315 (2010).

    Article  CAS  Google Scholar 

  16. An, B. et al. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709–717 (2019).

    Article  CAS  Google Scholar 

  17. Wang, Z.-Q. et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 5, 4255–4259 (2015).

    Article  CAS  Google Scholar 

  18. Dong, X. et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B 191, 8–17 (2016).

    Article  CAS  Google Scholar 

  19. Chu, S. et al. Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 22, 6540–6546 (2020).

  20. Dasireddy, V. D., Štefančič, N. S., Huš, M. & Likozar, B. Effect of alkaline earth metal oxide (MO) Cu/MO/Al2O3 catalysts on methanol synthesis activity and selectivity via CO2 reduction. Fuel 233, 103–112 (2018).

    Article  CAS  Google Scholar 

  21. Peternele, W. S. et al. Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties. J. Nanomater. 2014, 682985 (2014).

  22. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  23. Liang, Z.-Q. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 9, 3828 (2018).

    Article  Google Scholar 

  24. Lv, J. J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Article  Google Scholar 

  25. Karapinar, D. et al. Electroreduction of CO2 on single‐site copper‐nitrogen‐doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019).

    Article  CAS  Google Scholar 

  26. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  Google Scholar 

  27. van Deelen, T. W., Mejía, C. H. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  28. Pacchioni, G. & Freund, H.-J. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).

    Article  CAS  Google Scholar 

  29. Chen, M. & Goodman, D. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    Article  CAS  Google Scholar 

  30. Luches, P. et al. Nature of Ag islands and nanoparticles on the CeO2(111) surface. J. Phys. Chem. C 116, 1122–1132 (2012).

    Article  CAS  Google Scholar 

  31. Jiang, S., Klingan, K., Pasquini, C. & Dau, H. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 150, 041718 (2019).

    Article  Google Scholar 

  32. Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    Article  CAS  Google Scholar 

  33. Chen, X. et al. Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 10, 672–682 (2019).

    Article  Google Scholar 

  34. An, H. et al. Sub‐second time‐resolved surface enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

  35. Devasia, D., Wilson, A. J., Heo, J., Mohan, V. & Jain, P. K. A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nat. Commun. 12, 2612 (2021).

    Article  CAS  Google Scholar 

  36. Sander, T. et al. Correlation of intrinsic point defects and the Raman modes of cuprous oxide. Phys. Rev. B 90, 045203 (2014).

    Article  CAS  Google Scholar 

  37. Mayer, S. T. & Muller, R. H. An in situ Raman spectroscopy study of the anodic oxidation of copper in alkaline media. J. Electrochem. Soc. 139, 426 (1992).

    Article  CAS  Google Scholar 

  38. Wang, Y. & Pierson, J. Binary copper oxides as photovoltaic absorbers: recent progress in materials and applications. J. Phys. D 54, 263002 (2021).

    Article  CAS  Google Scholar 

  39. Debbichi, L., Marco de Lucas, M., Pierson, J. & Kruger, P. Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C 116, 10232–10237 (2012).

    Article  CAS  Google Scholar 

  40. Graciani, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    Article  CAS  Google Scholar 

  41. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    Article  CAS  Google Scholar 

  42. Yan, B. et al. Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. J. Catal. 374, 60–71 (2019).

    Article  CAS  Google Scholar 

  43. Kattel, S. et al. CO2 hydrogenation over oxide‐supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew. Chem. Int. Ed. 55, 7968–7973 (2016).

    Article  CAS  Google Scholar 

  44. Kattel, S., Yan, B., Yang, Y., Chen, J. G. & Liu, P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 138, 12440–12450 (2016).

    Article  CAS  Google Scholar 

  45. Cao, A., Wang, Z., Li, H., Elnabawy, A. O. & Nørskov, J. K. New insights on CO and CO2 hydrogenation for methanol synthesis: the key role of adsorbate–adsorbate interactions on Cu and the highly active MgO–Cu interface. J. Catal. 400, 325–331 (2021).

    Article  CAS  Google Scholar 

  46. Xiao, H., Cheng, T. & Goddard, W. A. III Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  Google Scholar 

  47. Cheng, T., Xiao, H. & Goddard, W. A. III Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  Google Scholar 

  48. Luo, M. & Koper, M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 5, 615–623 (2022).

    Article  CAS  Google Scholar 

  49. Monteiro, M. C. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Li, J. et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 11, 3685 (2020).

    Article  CAS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  55. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  56. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  57. Mathew, K., Kolluru, V. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  Google Scholar 

  58. Jinnouchi, R. & Anderson, A. B. Aqueous and surface redox potentials from self-consistently determined Gibbs energies. J. Phys. Chem. C 112, 8747–8750 (2008).

    Article  CAS  Google Scholar 

  59. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Suncor Energy, the Natural Sciences and Engineering Research Council (NSERC) of Canada and the CIFAR Bio-Inspired Solar Energy program. S.-F.H. acknowledges support from the Ministry of Science and Technology, Taiwan (contract nos MOST 110-2113-M-009-007-MY2, MOST 110-2628-M-A49-002 and MOST 111-2628-M-A49-007) and from the Yushan Young Scholar Program, Ministry of Education, Taiwan. This research used the synchrotron resources of the Advanced Photon Source (APS), an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, and was supported by the US DOE under contract no. DE-AC02-06CH11357. The authors thank T. Wu and G. Sterbinsky for technical support at the 9BM beamline of the APS. All DFT computations were performed on the Niflheim supercomputer at the Department of Physics, Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Contributions

E.H.S. supervised the project. A.X. designed and carried out the experiments and some of the DFT calculations, analysed the data and wrote the paper. S.-F.H., F.L. and J.A. performed the synchrotron X-ray spectroscopy measurements. A.C., Zhenbin Wang and N.K. contributed to the DFT calculations and data analysis. J.E.H. and Y.Y. contributed to the in situ Raman measurements. Y.Y. conducted SEM and TEM characterizations. A.S.R. carried out XPS measurements. A.O. worked on substrate design. F.-Y.W., Z.-Y.L., H.-J.T. and T.-J.L. contributed to performance repeating. The other authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Chaofang Dong or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Hung, SF., Cao, A. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat Catal 5, 1081–1088 (2022). https://doi.org/10.1038/s41929-022-00880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00880-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing