Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids


Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from air, water and sunlight. Yet it remains unclear whether all photons absorbed in the materials can be transferred through the material–biology interface for solar-to-chemical production and whether the presence of materials beneficially affects microbial metabolism. Here we report a microbe–semiconductor hybrid by interfacing the CO2- and N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2% ± 7.3% and 7.1% ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe–semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favouring higher quantum efficiencies compared with biological counterparts alone.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Microbe–semiconductor hybrids for efficient photocatalytic fixation of CO2 and N2.
Fig. 2: The photocatalytic performance and physical interfaces of the microbe–semiconductor hybrids.
Fig. 3: Photophysical characterizations of the microbe–semiconductor interface.
Fig. 4: Proteomic and metabolomic analyses of the photocatalytic hybrids.

Data availability

The proteomic and metabolomic data generated in this study are available in the Supplementary Data files. The reference proteome of X. autotrophicus was obtained from the UniProt database (UP000305131), and the pathway analyses were performed based on the KEGG database ( Other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    Article  CAS  Google Scholar 

  5. Chen, H., Dong, F. & Minteer, S. D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 3, 225–244 (2020).

    Article  Google Scholar 

  6. Lu, L. et al. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1, 750–758 (2018).

    Article  Google Scholar 

  7. Hogewoning, S. W. et al. Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell. 24, 1921–1935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Emerson, R. The quantum yield of photosynthesis. Annu. Rev. Plant Physiol. 9, 1–24 (1958).

    Article  CAS  Google Scholar 

  9. Allen, M. B. & Arnon, D. I. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol. 30, 366–372 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minchin, F. R. & Witty, J. F., in Advances in Photosynthesis and Respiration (eds Lambers, H. & Ribas-Carbo, M.) 195–205 (Springer, 2006).

  11. Foyer, C. H., Neukermans, J., Queval, G., Noctor, G. & Harbinson, J. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637–1661 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina Niña, S. & Erb, T. J. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salimijazi, F. et al. Constraints on the efficiency of engineered electromicrobial production. Joule 4, 2101–2130 (2020).

    Article  CAS  Google Scholar 

  14. Wise, L. et al. Thermodynamic constraints on electromicrobial protein production. Front. Bioeng. Biotechnol. (2022).

  15. Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Dogutan, D. K. & Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Sakimoto, K. K. et al. Physical biology of the materials–microorganism interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, T. More efficient together. Science 350, 738–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Fang, X., Kalathil, S. & Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 49, 4926–4952 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Sakimoto, K. K., Wong, A. B. & Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting—biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, C., Sakimoto, K. K., Colón, B. C., Silver, P. A. & Nocera, D. G. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proc. Natl Acad. Sci. USA 114, 6450–6455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao, B. et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science 373, 1336–1340 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, R. et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio–abiotic hybrid system. Chem 6, 234–249 (2020).

    Article  CAS  Google Scholar 

  26. Haro-González, P., Martínez-Maestro, L., Martín, I. R., García-Solé, J. & Jaque, D. High-sensitivity fluorescence-lifetime thermal sensing based on CdTe quantum dots. Small 8, 2652–2658 (2012).

    Article  PubMed  Google Scholar 

  27. Brown, K. A., Song, Q., Mulder, D. W. & King, P. W. Diameter-dependent electron transfer kinetics in semiconductor–enzyme complexes. ACS Nano 8, 10790–10798 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Wiegel, J. in The Prokaryotes (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E.) 290–314 (Springer, 2006).

  29. Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Z. et al. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Joule 5, 344–359 (2021).

    Article  CAS  Google Scholar 

  31. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    Article  CAS  Google Scholar 

  32. Ferguson, S. J. ATP synthase: from sequence to ring size to the P/O ratio. Proc. Natl Acad. Sci. USA 107, 16755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rittmann, B. E. et al. in Environmental Biotechnology: Principles and Applications 128–130 (McGraw-Hill, 2001).

  34. Somers, R. C., Bawendi, M. G. & Nocera, D. G. CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 36, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Baskoutas, S. & Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006).

    Article  Google Scholar 

  36. Wang, B. et al. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy Environ. Sci. 12, 2185–2191 (2019).

    Article  CAS  Google Scholar 

  37. Jiang, Z. et al. AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy 46, 234–240 (2018).

    Article  CAS  Google Scholar 

  38. Gai, P. P. et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid. Angew. Chem. Int. Ed. 59, 7224–7229 (2020).

    Article  CAS  Google Scholar 

  39. Lakowicz, J. R. in Principles of Fluorescence Spectroscopy 3rd edn (ed. Lakowicz, J. R.) 277–286 (Springer, 2006).

  40. Elsen, S., Colbeau, A., Chabert, K. & Vignais, P. M. The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J. Bacteriol. 178, 5174–5181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol. Mol. Biol. Rev. 68, 263–279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yates, M. G., Jones, C. W. in Advances in Microbial Physiology (eds Rose, A. H. & Tempest D. W.) 71–135 (Academic Press, 1974).

  43. Grosz, R. & Stephanopoulos, G. Statistical mechanical estimation of the free energy of formation of E. coli biomass for use with macroscopic bioreactor balances. Biotechnol. Bioeng. 25, 2149–2163 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Stouthamer, A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek 39, 545–565 (1973).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, S. W., Karpol, A., Friedman, S., Maru, B. T. & Tracy, B. P. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol. 61, 189–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Leger, D. et al. Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proc. Natl Acad. Sci. USA 118, e2015025118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Øverland, M., Tauson, A., Shearer, K. & Skrede, A. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Arch. Anim. Nutr. 64, 171–189 (2010).

    Article  PubMed  Google Scholar 

  48. Peng, Y. et al. Copper(I) cysteine complexes: efficient Earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. Chem. Commun. 51, 12556–12559 (2015).

    Article  CAS  Google Scholar 

  49. Doyle, A., Weintraub, M. N. & Schimel, J. P. Persulfate digestion and simultaneous colorimetric analysis of carbon and nitrogen in soil extracts. Soil Sci. Soc. Am. J. 68, 669–676 (2004).

    Article  CAS  Google Scholar 

  50. Cabrera, M. L. & Beare, M. H. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J. 57, 1007–1012 (1993).

    Article  CAS  Google Scholar 

  51. Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Atallah, T. L. et al. Decay-associated Fourier spectroscopy: visible to shortwave infrared time-resolved photoluminescence spectra. J. Phys. Chem. A 123, 6792–6798 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Lakowicz, J. R. in Principles of Fluorescence Spectroscopy 3rd edn (ed. Lakowicz, J. R.) 142 (Springer, 2006).

  54. Brown, K. A., Dayal, S., Ai, X., Rumbles, G. & King, P. W. Controlled assembly of hydrogenase–CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R. & Schlegel, H. G. Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int. J. Syst. Evol. Microbiol. 28, 573–581 (1978).

    Google Scholar 

  56. Björkman, O. & Demming, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170, 489–504 (1987).

    Article  PubMed  Google Scholar 

  57. Redfield, A. C., Ketchum, B. H., Richards, F. A. in The Sea (ed. Hill, M. N.) 26–77 (Wiley, 1963).

  58. Lu, S., Guan, X. & Liu, C. Electricity-powered artificial root nodule. Nat. Commun. 11, 1505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Srivastava, A. K. & Ambasht, R. S. Biomass, production, decomposition of and N release from root nodules in two Casuarina equisetifolia plantations in Sonbhadra, India. J. Appl. Ecol. 32, 121–127 (1995).

    Article  Google Scholar 

  60. Wang, B., Jiang, Z., Yu, J. C. M., Wang, J. & Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 19, 9296–9301 (2019).

    Article  Google Scholar 

  61. Bertram, J. R., Ding, Y. & Nagpal, P. Gold nanoclusters cause selective light-driven biochemical catalysis in living nano-biohybrid organisms. Nanoscale Adv. 2, 2363–2370 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ding, Y. et al. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot–bacteria nanobiohybrids. J. Am. Chem. Soc. 141, 10272–10282 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Göbbels, L. et al. Cysteine: an overlooked energy and carbon source. Sci. Rep. 11, 2139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y., Zheng, J. W., Zhang, Z. J., Yuan, C. W. & Fu, D. G. CdTe nanocrystals as luminescent probes for detecting ATP, folic acid and l-cysteine in aqueous solution. Colloids Surf. A 342, 102–106 (2009).

    Article  CAS  Google Scholar 

Download references


We thank S. Tenney for the quantum yield characterization experiment, D. Xiang and B. Natinsky for the gas chromatography and A. Xiao for coding assistance. We thank E. Sletten at UCLA for the use of the fluorometer and the dynamic light scattering instrument. We also thank the UCLA Molecular Instrumentation Center, the UCLA Metabolomics Center, the UCLA Proteome Research Center and the UCLA California NanoSystems Institute for instrumental support. This study was supported by National Institutes of Health grant R35GM138241 (C.L.), the Jeffery and Helo Zink Endowed Professional Development Term Chair (C.L.), National Institutes of Health grant S10OD016387 (J.O.P.), a Hellman Fellowship (J.O.P.) and a UCLA Summer Mentored Research Fellowship (X.G.).

Author information

Authors and Affiliations



C.L. supervised the project. C.L. and X.G. designed the experiments and wrote the manuscript. S.E conducted the metabolomic experiments and analysed the data under the supervision of J.O.P. X.H. performed the electron microscopy characterizations under the supervision of Y.Y. T.L.A. led the lifetime measurements under the supervision of J.R.C. Y.X. assisted the proteomics analysis. S.L. conducted the flow-cytometry characterization. B.C. assisted with sample preparation for electron microscopy characterization under the supervision of X.D. and Y.H. J.S. and K.W. assisted in the microbial inoculation and photocatalytic experiments. All the authors discussed the results and assisted during the manuscript preparation.

Corresponding author

Correspondence to Chong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Buz Barstow, Paul King and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterizations of CdTe quantum dots (QDs).

a, HAADF-STEM image of aggregated QDs and the corresponding EDS mapping in the same region for (b) cadmium (Cd) and (c) tellurium (Te). d, HRTEM image of individual CdTe QDs. e, Magnified HRTEM image of the highlighted region in d. f, the corresponding Fourier transform results indicate a lattice spacing of 0.21 nm, agree with the (220) plane of the cubic phase. g, Ultraviolet-visible spectrum (black) overlayed with the emission spectrum (yellow) of CdTe QDs. h, The measurement of dynamic light scattering along with the corresponding size distribution. The experiment of electron microscopy has been repeated independently for more than 3 times with similar results. Scale bars are 30 nm in a-c, 10 nm in d, and 1 nm in e.

Extended Data Fig. 2 Viability results of X. autotrophicus measured by flow cytometry.

a, The gate of X. autotrophicus in the forward-scattered light area/side-scattered light area (FSC-A/SSC-A) plot. b, Fluorescent intensity of SYTO 9 stained (live) X. autotrophicus versus its FSC-A. c, Viability percentage of the microbes under different conditions, n = 3 biological replicates with 10,000 particles recorded before gating (error bars present the standard deviation).

Extended Data Fig. 3 Gas composition analysis of reactors’ headspace by gas chromatography.

Gas chromatograms of photoreactors’ headspace for the microbe–semiconductor hybrids before (light blue) and after (dark blue) a 4-day photocatalytic reaction, along with a standard sample (black) containing O2 and H2 (0.5 v/v% for each component in N2).

Extended Data Fig. 4 Electron microscopy images of the microbe–semiconductor hybrids and controls.

a, HRTEM image of the microbe–semiconductor hybrid. b, The magnified image of the red box in a. c, The magnified image of the red box in b. d, The corresponding Fourier transform results of c indicating a lattice spacing of 0.22 nm for the QDs. e, TEM image of the microbe–semiconductor hybrid. f, The magnified image of the red box in e. g, HAADF-STEM image of sectioned microbe–semiconductor hybrid in the absence of cysteine. h, HAADF-STEM image of sectioned pure microbes. The experiment of electron microscopy has been repeated independently for more than 3 times with similar results. Scale bars are 1 μm in a, 20 nm in b, 500 nm in e, 50 nm in f, and 200 nm in g and h.

Extended Data Fig. 5 Absorption and emission spectra of partially aggregated CdTe QDs.

Absorbance (solid lines) and photoluminescence (PL) (dashed lines) spectra of the well-dispersed QD suspension (black) and the partially aggregated CdTe QDs (yellow). The average particle diameters from the dynamic light scattering measurements are 4.02 ± 0.61 and 62.06 ± 0.18 nm for the well-dispersed and partially aggregated QDs (mean + /− standard deviation), respectively.

Extended Data Fig. 6 Interactions between QDs and microbes studied by flow cytometry.

a and b, Dispersion of pure CdTe QDs. c and d, Microbial culture of X. autotrophicus. The microbe–semiconductor hybrids at (e and f) t = 0 hr and (i and j) t = 24 hrs after assembly. The mixture of QDs and microbes at (g and h) t = 0 hr and (k and l) t = 24 hrs after assembly. a, c, e, g, i, and k are the plots of SSC-A versus FSC-A that illustrate the identity of the microbial population. b, d, f, h, j, and l are the plots of emission at 525 ± 50 nm versus FSC-A that illustrate the distribution of microbial population gated in the SSC-A/FSC-A plot attached with emissive QDs. The circles in the plots illustrate the gated areas corresponding to the microbial populations attached with emissive QDs whose temporal trends were shown in (m). Representative results presented above (n = 3 biological replicates with 10,000 particles recorded before gating, error bars present the standard deviation). Additional quantification of the percentage of QDs closely interacting with microbes are available in Supplementary Fig. 4.

Extended Data Fig. 7 Stern–Volmer study for the mixture of CdTe QDs and cysteine.

The ratios of PL emission intensities of CdTe QDs (I0/I) without and with the addition of different equivalents of cysteine (Cys). A linear relationship was observed at low Cys equivalents, demonstrating a dynamic quenching mechanism orientated from the diffusive encounters between the Cys molecules and the emissive QDs. The saturated values of I0/I under high Cys equivalents due to quencher accessibility are consistent with the literature report64.

Extended Data Fig. 8 Schematic illustrations of the discussed pathways and the relevant metabolic regulations.

The regulation of the (a) Calvin–Benson-Bassham cycle, (b) two-component regulatory system, and (c) oxidative phosphorylation in the Hybrid compared to the H2-fed microbes.

Extended Data Fig. 9 The optical absorbance of the CdTe QDs in the hybrids as a function of microbial inoculation.

The optical absorbances of the CdTe QDs in the microbe–semiconductor hybrids (ODQDs), sensitive to the presence of microbial scattering centers, are plotted against the amounts of microbial inoculation presented as OD600. See section “Analytical procedures for the aliquoted samples in the photosynthetic experiments” in the Methods for details.

Extended Data Table 1 Literature reported internal quantum yields (IQYs) of biochemical fixation of CO2 and N2 powered by natural and artificial light-absorbers

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Methods, Table 1, Figs. 1–4 and references.

Reporting Summary

Supplementary Data 1

LC-MS results of the metabolome in the X. autotrophicus–CdTe hybrid system before and after the 15N and 13C isotope-labelling experiment.

Supplementary Data 2

Heatmap data for significantly regulated proteins and metabolites in the microbe–semiconductor hybrids in comparison to the H2-fed microbes.

Supplementary Data 3

LC-MS results of the proteome in X. autotrophicus under different experimental conditions.

Supplementary Data 4

Fold changes of protein expression comparing the microbe–semiconductor hybrids against the H2-fed microbes.

Supplementary Data 5

LC-MS results of the metabolome in X. autotrophicus under different experimental conditions.

Supplementary Data 6

Fold changes of metabolites comparing the microbe–semiconductor hybrids against the H2-fed microbes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Erşan, S., Hu, X. et al. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids. Nat Catal 5, 1019–1029 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing