Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt

Abstract

The origin of the large kinetic pH effect in hydrogen electrocatalysis, that is, the approximately two orders of magnitude decrease in reaction kinetics when moving from acid to alkaline, remains far from having a consensus. Here we show that it is the significantly different connectivity of hydrogen-bond networks in electric double layers that causes the large kinetic pH effect. This result has been obtained by meticulously comparing the electric double layers of acid and alkaline interfaces from ab initio molecular dynamics simulations, and the computed vibrational density of states of water molecules in the interfaces simulated with ab initio molecular dynamics, with the results of in situ surface-enhanced infrared absorption spectroscopy. Using a Pt–Ru alloy as a model catalyst, we further reveal an unanticipated role of OH adsorption in improving the kinetics of alkaline hydrogen electrocatalysis, namely, by increasing the connectivity of hydrogen-bond networks in electric double layers rather than by merely affecting the energetics of surface reaction steps. These findings highlight the key roles of electric double layer structures in electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: EDL structures at acid and alkaline interfaces.
Fig. 2: Comparison of Volmer barriers and HBEs at acid and alkaline interfaces.
Fig. 3: Infrared spectra.
Fig. 4: Spectroscopic analysis of different interfacial water molecules.
Fig. 5: Improvement of the connectivity of interfacial H-bond networks by OHad.

Data availability

Representative data and extended datasets that support the findings reported in this study are available in the manuscript and the Supplementary Information. The data in the figures shown in the main text and the atomic coordinates of the initial and final configurations of the trajectories in the AIMD simulations are provided as supplementary files. Additional data are available from the corresponding author upon reasonable request.

References

  1. Chow, J., Kopp, R. J. & Portney, P. R. Energy resources and global development. Science 302, 1528–1531 (2003).

    Article  PubMed  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2014).

    Article  Google Scholar 

  3. Inzelt, G. Milestones of the development of kinetics of electrode reactions. J. Solid State Electrochem. 15, 1373–1389 (2011).

    Article  CAS  Google Scholar 

  4. Huang, J., Li, P. & Chen, S. Quantitative understanding of the sluggish kinetics of hydrogen reactions in alkaline media based on a microscopic Hamiltonian model for the Volmer step. J. Phys. Chem. C 123, 17325–17334 (2019).

    Article  CAS  Google Scholar 

  5. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Article  CAS  Google Scholar 

  6. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Article  CAS  Google Scholar 

  8. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    Article  CAS  Google Scholar 

  9. Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016).

    Article  CAS  Google Scholar 

  10. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Giles, S. A. et al. Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. J. Catal. 367, 328–331 (2018).

    Article  CAS  Google Scholar 

  13. Zheng, J., Nash, J., Xu, B. & Yan, Y. Perspective—towards establishing apparent hydrogen binding energy as the descriptor for hydrogen oxidation/evolution reactions. J. Electrochem. Soc. 165, H27 (2018).

    Article  CAS  Google Scholar 

  14. Cheng, T., Wang, L., Merinov, B. V. & Goddard, W. A. III Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: greatly weakened water adsorption at high pH. J. Am. Chem. Soc. 140, 7787–7790 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. Co‐adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single‐crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  16. Janik, M. J., McCrum, I. T. & Koper, M. T. On the presence of surface bound hydroxyl species on polycrystalline Pt electrodes in the “hydrogen potential region” (0-0.4 V-RHE). J. Catal. 367, 332–337 (2018).

    Article  CAS  Google Scholar 

  17. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  18. Zhu, S., Qin, X., Yao, Y. & Shao, M. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article  PubMed  Google Scholar 

  19. Wang, Y. H. et al. Spectroscopic verification of adsorbed hydroxy intermediates in the bifunctional mechanism of the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 133, 5772–5775 (2021).

    Article  Google Scholar 

  20. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 124, 12663–12666 (2012).

    Article  Google Scholar 

  22. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Dinh, C. T. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2019).

    Article  CAS  Google Scholar 

  24. Men, Y., Li, P., Zhou, J., Chen, S. & Luo, W. Trends in alkaline hydrogen evolution activity on cobalt phosphide electrocatalysts doped with transition metals. Cell Rep. Phys. Sci. 1, 100136 (2020).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  26. Intikhab, S., Snyder, J. D. & Tang, M. H. Adsorbed hydroxide does not participate in the Volmer step of alkaline hydrogen electrocatalysis. ACS Catal. 7, 8314–8319 (2017).

    Article  CAS  Google Scholar 

  27. McCrum, I. T. & Koper, M. T. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  28. Li, J. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  29. Rebollar, L. et al. “Beyond adsorption” descriptors in hydrogen electrocatalysis. ACS Catal. 10, 14747–14762 (2020).

    Article  CAS  Google Scholar 

  30. Ramaswamy, N. et al. Hydrogen oxidation reaction in alkaline media: relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 41, 765–771 (2017).

    Article  CAS  Google Scholar 

  31. Shen, L. F. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem. Int. Ed. 132, 22583–22588 (2020).

    Article  Google Scholar 

  32. Serva, A., Salanne, M., Havenith, M. & Pezzotti, S. Size dependence of hydrophobic hydration at electrified gold/water interfaces. Proc. Natl Acad. Sci. USA 118, e2023867118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Serva, A., Havenith, M. & Pezzotti, S. The role of hydrophobic hydration in the free energy of chemical reactions at the gold/water interface: size and position effects. J. Chem. Phys. 155, 204706 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hpone Myint, K., Ding, W. & Willard, A. P. The influence of spectator cations on solvent reorganization energy is a short-range effect. J. Phys. Chem. B 125, 1429–1438 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).

    Article  CAS  Google Scholar 

  37. Berg, N., Bergwinkl, S., Nuernberger, P., Horinek, D. & Gschwind, R. M. Extended hydrogen bond networks for effective proton-coupled electron transfer (PCET) reactions: the unexpected role of thiophenol and its acidic channel in photocatalytic hydroamidations. J. Am. Chem. Soc. 143, 724–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lan, Y. Q. et al. Implanting numerous hydrogen‐bonding networks in Cu‐porphyrin based nanosheet to boost CH4 selectivity in neutral media CO2 electroreduction. Angew. Chem. Int. Ed. 60, 2–9 (2021).

    Google Scholar 

  39. Alfarano, S. R. et al. Stripping away ion hydration shells in electrical double-layer formation: water networks matter. Proc. Natl Acad. Sci. USA 118, e2108568118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serva, A., Scalfi, L., Rotenberg, B. & Salanne, M. Effect of the metallicity on the capacitance of gold–aqueous sodium chloride interfaces. J. Chem. Phys. 155, 044703 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Le, J. B., Fan, Q. Y., Li, J. Q. & Cheng, J. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface. Sci. Adv. 6, eabb1219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Limmer, D. T., Willard, A. P., Madden, P. & Chandler, D. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc. Natl Acad. Sci. USA 110, 4200–4205 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  43. Liu, Y., Kawaguchi, T., Pierce, M. S., Komanicky, V. & You, H. Layering and ordering in electrochemical double layers. J. Phys. Chem. Lett. 9, 1265–1271 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Article  CAS  Google Scholar 

  45. Grosjean, B., Bocquet, M. L. & Vuilleumier, R. Versatile electrification of two-dimensional nanomaterials in water. Nat. Commun. 10, 1656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dubouis, N. et al. The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9, 6683–6688 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Dunwell, M., Yan, Y. & Xu, B. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au. Surf. Sci. 650, 51–56 (2016).

    Article  CAS  Google Scholar 

  48. Yamakata, A. & Osawa, M. Dynamics of double-layer restructuring on a platinum electrode covered by CO: laser-induced potential transient measurement. J. Phys. Chem. C 112, 11427–11432 (2008).

    Article  CAS  Google Scholar 

  49. Osawa, M., Tsushima, M., Mogami, H., Samjeske, G. & Yamakata, A. Structure of water at the electrified platinum−water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  50. Zhu, S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 4, 711–718 (2021).

    Article  CAS  Google Scholar 

  51. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tong, Y., Lapointe, F., Thämer, M., Wolf, M. & Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56, 4211–4214 (2017).

    Article  CAS  Google Scholar 

  53. Lambert, D. K. Vibrational Stark effect of adsorbates at electrochemical interfaces. Electrochim. Acta 41, 623–630 (1996).

    Article  CAS  Google Scholar 

  54. Liu, E. et al. Unifying the hydrogen evolution and oxidation reactions kinetics in base by identifying the catalytic roles of hydroxyl-water-cation adducts. J. Am. Chem. Soc. 141, 3232–3239 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Jia, Q., Liu, E., Jiao, L., Li, J. & Mukerjee, S. Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Curr. Opin. Electrochem. 12, 209–217 (2018).

    Article  CAS  Google Scholar 

  56. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Intikhab, S. et al. Caffeinated interfaces enhance alkaline hydrogen electrocatalysis. ACS Catal. 10, 6798–6802 (2020).

    Article  CAS  Google Scholar 

  58. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  60. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  61. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  62. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  63. Aktulga, H. M., Fogarty, J. C., Pandit, S. A. & Grama, A. Y. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 38, 245–259 (2012).

    Article  Google Scholar 

  64. Shin, Y. K., Gai, L., Raman, S. & Van Duin, A. C. Development of a ReaxFF reactive force field for the Pt–Ni alloy catalyst. J. Phys. Chem. A 120, 8044–8055 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Mathew, K., Kolluru, V. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

  66. Trasatti, S. The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986).

    Article  CAS  Google Scholar 

  67. Li, P., Huang, J., Hu, Y. & Chen, S. Establishment of the potential of zero charge of metals in aqueous solutions: different faces of water revealed by ab initio molecular dynamics simulations. J. Phys. Chem. C 125, 3972–3979 (2021).

    Article  CAS  Google Scholar 

  68. Li, P., Liu, Y. & Chen, S. Microscopic EDL structures and charge–potential relation on stepped platinum surface: insights from the ab initio molecular dynamics simulations. J. Chem. Phys. 156, 104701 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics. Phys. Rev. Lett. 119, 016801 (2017).

    Article  PubMed  Google Scholar 

  70. Marković, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Article  Google Scholar 

  71. Oberhofer, H., Dellago, C. & Geissler, P. L. Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B 109, 6902–6915 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Yan, Y. G. et al. Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. J. Phys. Chem. B 109, 7900–7906 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, E. et al. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy Environ. Sci. 13, 3064–3074 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant nos 21832004 and 21673163 to S.C.) and C.-L. Guo at Wuhan University for fruitful discussions and kindly sharing the infrared spectrometer. We also gratefully acknowledge generous grants of computational resources from the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

S.C. supervised the project. P.L. and S.C. conceived the idea and designed the experiments. P.L. performed the AIMD simulations. Y.J. performed the electrochemical and spectroscopic measurements under the guidance of S.C. and W.C.; P.L., Y.J., Y.H., Y.M., Y.L and S.C. analysed the data. P.L., Y.J. and S.C. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Shengli Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Qingying Jia, Jun Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33 and Notes 1–3.

Supplementary Data 1

Atomic coordinates of the initial and final configurations of the trajectories in AIMD simulations for the systems shown in Fig. 1 and Fig. 5 (in Vienna Ab initio Simulation Package CONTCAR format).

Supplementary Data 2

Data shown in Figs. 1–5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Jiang, Y., Hu, Y. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat Catal 5, 900–911 (2022). https://doi.org/10.1038/s41929-022-00846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00846-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing