Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction

Abstract

C–C coupling is a critical step of CO2 fixation in constructing the carbon skeleton of value-added multicarbon products. The Wood–Ljungdahl pathway is an efficient natural process through which microbes transform CO2 into methyl and carbonyl groups and subsequently couple them together. This asymmetric coupling mechanism remains largely unexplored in inorganic CO2 electroreduction. Here we experimentally validate the asymmetric coupling pathway through isotope-labelled co-reduction experiments on a Cu surface where 13CH3I and 12CO are co-fed externally as the methyl and the carbonyl source, respectively. Isotope-labelled multicarbon oxygenates were detected, which confirms an electrocatalytic asymmetric coupling on the Cu surface. We further employed tandem Cu–Ag nanoparticle systems in which *CHx and *CO intermediates can be generated to achieve asymmetric C–C coupling for a practical CO2 electroreduction. We found that the production of multicarbon oxygenates is correlated with the generation rate of two intermediate indicators, CH4 and CO. By aligning their rates, the oxygenates generation rate can be maximized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric C–C coupling pathways in biological carbon fixation and inorganic CO2 electroreduction.
Fig. 2: Electrocatalytic dehalogenation of CH3I under negative biases.
Fig. 3: Potential dependent CO reduction experiments and 13CH3I and 12CO co-reduction experiments on EC-Cu.
Fig. 4: Cu–Ag tandem CO2 electrolysis optimization via asymmetric coupling.

Similar content being viewed by others

Data availability

All data is available from the authors upon reasonable request.

References

  1. Jordaan, S. M. & Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 4, 915–920 (2021).

    Article  Google Scholar 

  2. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  3. Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013).

    Article  CAS  Google Scholar 

  4. Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 120, 5107–5157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marques Mota, F. & Kim, D. H. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem. Soc. Rev. 48, 205–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Can, M., Armstrong, F. A. & Ragsdale, S. W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114, 4149–4174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Hori, Y., Murata, A. & Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989).

    Article  CAS  Google Scholar 

  10. Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  12. Hanselman, S., Koper, M. T. M. & Calle-Vallejo, F. Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species. ACS Energy Lett. 3, 1062–1067 (2018).

    Article  CAS  Google Scholar 

  13. Perez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    Article  CAS  Google Scholar 

  14. Kim, Y. et al. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020).

    Article  CAS  Google Scholar 

  15. Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Q., Martirez, J. M. P. & Carter, E. A. Revisiting understanding of electrochemical CO2 reduction on Cu(111): competing proton-coupled electron transfer reaction mechanisms revealed by embedded correlated wavefunction theory. J. Am. Chem. Soc. 143, 6152–6164 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  19. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  20. Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    Article  CAS  Google Scholar 

  21. Schouten, K. J., Qin, Z., Perez Gallent, E. & Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  25. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    Article  CAS  Google Scholar 

  26. Vasileff, A. et al. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem. Int. Ed. 132, 19817–19821 (2020).

    Article  Google Scholar 

  27. Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    Article  CAS  Google Scholar 

  28. Iyengar, P., Kolb, M. J., Pankhurst, J. R., Calle-Vallejo, F. & Buonsanti, R. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts. ACS Catal. 11, 4456–4463 (2021).

    Article  CAS  Google Scholar 

  29. Ting, L. R. L. et al. Enhancing CO2 electroreduction to ethanol on copper–silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020).

    Article  CAS  Google Scholar 

  30. Raaijman, S. J., Schellekens, M. P., Corbett, P. J. & Koper, M. T. M. High-pressure CO electroreduction at silver produces ethanol and propanol. Angew. Chem. Int. Ed. 60, 21732–21736 (2021).

    Article  CAS  Google Scholar 

  31. Kas, R. et al. In‐situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO2: theory, practice and challenges. ChemPhysChem 20, 2904–2925 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Sebastián-Pascual, P. & Escudero-Escribano, M. Surface characterization of copper electrocatalysts by lead underpotential deposition. J. Electroanal. Chem. 896, 115446 (2021).

    Article  Google Scholar 

  33. Chen, Y. Recent advances in methylation: a guide for selecting methylation reagents. Chem. Eur. J. 25, 3405–3439 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fedurco, M., Sartoretti, C. J. & Augustynski, J. Reductive cleavage of the carbon−halogen bond in simple methyl and methylene halides. Reactions of the methyl radical and carbene at the polarized electrode/aqueous solution interface. Langmuir 17, 2380–2387 (2001).

    Article  CAS  Google Scholar 

  36. Lin, J. L. & Bent, B. E. Two mechanisms for formation of methyl radicals during the thermal decomposition of methyl iodide on a copper surface. J. Phys. Chem. 97, 9713–9718 (1993).

    Article  CAS  Google Scholar 

  37. Lei, C., Liang, F., Li, J., Chen, W. & Huang, B. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): effects of molecular structure on the dehalogenation reactivity and mechanisms. Chem. Eng. J. 358, 1054–1064 (2019).

    Article  CAS  Google Scholar 

  38. Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).

    Article  CAS  Google Scholar 

  39. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang, X., Malkani, A., Yang, X. & Xu, B. Mechanistic insights into electroreductive C–C coupling between CO and acetaldehyde into multicarbon products. J. Am. Chem. Soc. 142, 2975–2983 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Van Santen, R., Markvoort, A., Filot, I., Ghouri, M. & Hensen, E. Mechanism and microkinetics of the Fischer–Tropsch reaction. Phys. Chem. Chem. Phys. 15, 17038–17063 (2013).

    Article  PubMed  Google Scholar 

  42. Zhao, Y. et al. Direct C–C coupling of CO2 and the methyl group from CH4 activation through facile insertion of CO2 into Zn–CH3 σ-bond. J. Am. Chem. Soc. 138, 10191–10198 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y., Wang, H., Han, J., Zhu, X. & Ge, Q. Active site ensembles enabled C–C coupling of CO2 and CH4 for acetone production. J. Phys. Chem. C 122, 9570–9577 (2018).

    Article  CAS  Google Scholar 

  44. Kim, D. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 5, 1032–1042 (2020).

    Article  CAS  Google Scholar 

  45. Hung, L. I., Tsung, C. K., Huang, W. & Yang, P. Room‐temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 22, 1910–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 136, 13319–13325 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, L. et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl Acad. Sci. USA 117, 12572–12575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy under contract DE-AC02-05CH11231, FWP CH030201 (Catalysis Research Program). STEM–EDX and XPS were conducted using facilities at the Molecular Foundry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231. The STEM–EELS work made use of the TEM facilities (Nion UltraSTEM) at the Cornell Center for Materials Research (CCMR), which are supported through the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program (DMR-1719875). We thank the TEM technical support of R. Dhall and K. Bustillo at NCEM and of M. Thomas at Cornell. We thank H. Celik and UC Berkeley’s NMR facility in the College of Chemistry (CoC-NMR) for spectroscopic assistance. Instruments in the CoC-NMR are supported in part by NIH S10OD024998. C.C. and J.J. gratefully acknowledge support from Suzhou Industrial Park Scholarships. S.Y. acknowledges support from a Samsung Scholarship. Y.Y. acknowledges support from a Miller Research Fellowship. P.-C.C. acknowledges support from a Kavli ENSI Heising-Simons Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.C., S.Y. and P.Y. conceived the research and designed the experiments. C.C. conducted the isotope labelling experiments and S.Y. conducted the NP synthesis and CO2 electrolysis with assistance from S.L., I.R., S.C. and Y.S. Electron microscopy characterization and structural analysis were conducted by Y.Y., J.J. and P.-C.C. All the authors contributed to the discussion of the experimental results and the preparation of the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Bo Yang, Xinli Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Table 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yu, S., Yang, Y. et al. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat Catal 5, 878–887 (2022). https://doi.org/10.1038/s41929-022-00844-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00844-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing