Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2

Abstract

High value utilization of carbon dioxide (CO2) has attracted worldwide attention for decades. Catalytic carboxylation of alkenes with CO2 to synthesize valuable carboxylic acids and diacids is highly important. Although visible-light photocatalytic single-electron transfer reduction of CO2 could provide an alternative choice for diverse chemo- and regio-selectivities, it has rarely been investigated in carboxylation. Moreover, visible-light photocatalytic carboxylation of unactivated alkenes with CO2•− has never been reported. Here we report visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. In contrast to previous reports limited to activated alkenes, diverse unactivated aliphatic alkenes undergo selective carboxylations to give carboxylic acids, dicarboxylic acids and unnatural α-amino acid derivatives in moderate to good yields. Mechanistic studies suggest that CO2 might be reduced to CO2•− via consecutive photo-induced electron transfer, and this species would attack unactivated alkenes followed by subsequent hydrogen atom transfer and other relevant processes to afford the corresponding products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visible-light photocatalytic carboxylation of alkenes with CO2.
Fig. 2: Substrate scope for the reductive dicarboxylation.
Fig. 3: Substrate scope for the hydrocarboxylation via intermolecular HAT.
Fig. 4: Control experiments.

Similar content being viewed by others

Data availability

Details about materials and methods, experimental procedures, mechanistic studies, characterization data and NMR spectra are available in the Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

References

  1. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  CAS  PubMed  Google Scholar 

  2. Stephenson, C., Yoon, T. & MacMillan, D. W. C. Visible Light Photocatalysis in Organic Chemistry (Wiley-VCH, 2018).

  3. Goddard, J.-P., Ollivier, C. & Fensterbank, L. Photoredox catalysis for the generation of carbon centered radicals. Acc. Chem. Res. 49, 1924–1936 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Ravelli, D., Protti, S. & Fagnoni, M. Carbon–carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 116, 9850–9913 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Gentry, E. C. & Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 49, 1546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Q. & Wu, L.-Z. Recent advances in visible-light-driven organic reactions. Natl Sci. Rev. 4, 359–380 (2017).

    Article  CAS  Google Scholar 

  9. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  10. Chen, Y., Lu, L.-Q., Yu, D.-G., Zhu, C.-J. & Xiao, W.-J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem. 62, 24–57 (2019).

    Article  CAS  Google Scholar 

  11. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    Article  PubMed  Google Scholar 

  12. Tortajada, A., Börjesson, M. & Martin, R. Nickel-catalyzed reductive carboxylation and amidation reactions. Acc. Chem. Res. 54, 3941–3952 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Cao, Y., He, X., Wang, N., Li, H.-R. & He, L.-N. Photochemical and electrochemical carbon dioxide utilization with organic compounds. Chin. J. Chem. 36, 644–659 (2018).

    Article  CAS  Google Scholar 

  14. Yeung, C. S. Photoredox catalysis as a strategy for CO2 incorporation: direct access to carboxylic acids from a renewable feedstock. Angew. Chem. Int. Ed. 58, 5492–5502 (2019).

    Article  CAS  Google Scholar 

  15. Cai, B., Cheo, H. W., Liu, T. & Wu, J. Light-promoted organic transformations utilizing carbon-based gas molecules as feedstocks. Angew. Chem. Int. Ed. 60, 2–33 (2021).

    Article  Google Scholar 

  16. Ye, J.-H., Ju, T., Huang, H., Liao, L.-L. & Yu, D.-G. Radical carboxylative cyclizations and carboxylations with CO2. Acc. Chem. Res. 54, 2518–2531 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Klankermayer, J., Wesselbaum, S., Beydoun, K. & Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew. Chem. Int. Ed. 55, 7296–7343 (2016).

    Article  CAS  Google Scholar 

  18. He, M., Sun, Y. & Han, B. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013).

    Article  CAS  Google Scholar 

  19. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466–4514 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Matthessen, R., Fransaer, J., Binnemans, K. & Vos, D. E. D. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. Beilstein J. Org. Chem. 10, 2484–2500 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alkayal, A. et al. Harnessing applied potential: selective β-hydrocarboxylation of substituted olefins. J. Am. Chem. Soc. 142, 1780–1785 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Murata, K., Numasawa, N., Shimomaki, K., Takaya, J. & Iwasawa, N. Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(I) and photoredox catalysts. Chem. Commun. 53, 3098–3101 (2017).

    Article  CAS  Google Scholar 

  24. Yatham, V. R., Shen, Y. & Martin, R. Catalytic intermolecular dicarbofunctionalization of styrenes with CO2 and radical precursors. Angew. Chem. Int. Ed. 56, 10915–10919 (2017).

    Article  CAS  Google Scholar 

  25. Ye, J.-H. et al. Visible-light-driven iron-promoted thiocarboxylation of styrenes and acrylates with CO2. Angew. Chem. Int. Ed. 56, 15416–15420 (2017).

    Article  CAS  Google Scholar 

  26. Meng, Q.-Y., Wang, S., Huff, G. S. & König, B. Ligand-controlled regioselective hydrocarboxylation of styrenes with CO2 by combining visible light and nickel catalysis. J. Am. Chem. Soc. 140, 3198–3201 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Hou, J. et al. Visible-light-mediated metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3)−H alkanes. Angew. Chem. Int. Ed. 57, 17220–17224 (2018).

    Article  CAS  Google Scholar 

  28. Wang, H., Gao, Y., Zhou, C. & Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc. 142, 8122–8129 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Ju, T. et al. Dicarboxylation of alkenes, allenes, and (hetero)arenes with CO2 via visible-light photoredox catalysis. Nat. Catal. 4, 304–311 (2021).

    Article  CAS  Google Scholar 

  30. Juhl, M. et al. Copper-catalyzed carboxylation of hydroborated disubstituted alkenes and terminal alkynes with cesium fluoride. ACS Catal. 7, 1392–1396 (2017).

    Article  CAS  Google Scholar 

  31. Gaydou, M., Moragas, T., Juliá-Hernández, F. & Martin, R. Site-selective catalytic carboxylation of unsaturated hydrocarbons with CO2 and water. J. Am. Chem. Soc. 139, 12161–12164 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Song, L. et al. Visible-light photoredox-catalyzed remote difunctionalizing carboxylation of unactivated alkenes with CO2. Angew. Chem. Int. Ed. 59, 21121–21128 (2020).

    Article  CAS  Google Scholar 

  33. Cybularczyk-Cecotka, M., Szczepanik, J. & Giedyk, M. Photocatalytic strategies for the activation of organic chlorides. Nat. Catal. 3, 872–886 (2020).

    Article  CAS  Google Scholar 

  34. Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. La Porte, N. T. et al. Photoexcited radical anion super-reductants for solar fuels catalysis. Coord. Chem. Rev. 361, 98–119 (2018).

    Article  Google Scholar 

  36. Glaser, F., Kerzig, C. & Wenger, O. S. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. Angew. Chem. Int. Ed. 59, 10266–10284 (2020).

    Article  CAS  Google Scholar 

  37. Schreier, M. R. et al. Water-soluble tris(cyclometalated) iridium(III) complexes for aqueous electron and energy transfer photochemistry. Acc. Chem. Res. 55, 1290–1300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao, L.-L., Song, L., Yan, S.-S., Ye, J.-H. & Yu, D.-G. Highly reductive photocatalytic systems in organic synthesis. Trends Chem. 4, 512–527 (2022).

    Article  CAS  Google Scholar 

  39. Neumeier, M. et al. Dichromatic photocatalytic substitutions of aryl halides with a small organic dye. Chem. Eur. J. 24, 105–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh, I., Ghosh, T., Bardagi, J. I. & König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 346, 725–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Kerzig, C., Guo, X. & Wenger, O. S. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 141, 2122–2127 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Giedyk, M. et al. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat. Catal. 3, 40–47 (2020).

    Article  CAS  Google Scholar 

  43. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, J. et al. Unveiling extreme photoreduction potentials of donor–acceptor cyanoarenes to access aryl radicals from aryl chlorides. J. Am. Chem. Soc. 143, 13266–13273 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Cole, J. P. et al. Organocatalyzed Birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosso, J. A., Bertolotti, S. G., Braun, A. M., Mártire, D. O. & Gonzalez, M. C. Reactions of carbon dioxide radical anion with substituted benzenes. J. Phys. Org. Chem. 14, 300–309 (2001).

    Article  CAS  Google Scholar 

  47. Hendy, C. M., Smith, G. C., Xu, Z., Lian, T. & Jui, N. T. Radical chain reduction via carbon dioxide radical anion (CO2•−). J. Am. Chem. Soc. 143, 8987–8992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan, S.-S. et al. Visible-light photoredox-catalyzed selective carboxylation of C(sp3)−F bonds with CO2. Chem 7, 3099–3113 (2021).

    Article  CAS  Google Scholar 

  49. Chmiel, A. F., Williams, O. P., Chernowsky, C. P., Yeung, C. S. & Wickens, Z. K. Non-innocent radical ion intermediates in photoredox catalysis: parallel reduction modes enable coupling of diverse aryl chlorides. J. Am. Chem. Soc. 143, 10882–10889 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Morgenstern, D. A., Wittrig, R. E., Fanwick, P. E. & Kubiak, C. P. Photoreduction of carbon dioxide to its radical anion by [Ni3(μ3-I)2(dppm)3]: formation of two carbon–carbon bonds via addition of CO2•− to cyclohexene. J. Am. Chem. Soc. 115, 6470–6471 (1993).

  51. Alektiar, S. N. & Wickens, Z. K. Photoinduced hydrocarboxylation via thiol-catalyzed delivery of formate across activated alkenes. J. Am. Chem. Soc. 143, 13022–13028 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, H. et al. Visible light-driven anti-Markovnikov hydrocarboxylation of acrylates and styrenes with CO2. CCS Chem. 2, 1746–1756 (2020).

    Google Scholar 

  53. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, W., Xu, W., Xie, J., Yu, S. & Zhu, C. Distal radical migration strategy: an emerging synthetic means. Chem. Soc. Rev. 47, 654–667 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. S. Wenger, F. Glaser and B. Pfund from the University of Basel and J. J. Chruma from the University of Virginia for valuable suggestions. Financial support is provided by the National Natural Science Foundation of China (22225106, 21822108), Sichuan Science and Technology Program (20CXTD0112), Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province (2021ZYD0063), Fundamental Research Funds from Sichuan University (2020SCUNL102) and the Fundamental Research Funds for the Central Universities. We also thank X. Wang, H. Chen and Y. Luo from the Analysis and Testing Center of Sichuan University as well as J. Li, Q.-F. Zhang, D. Deng, L. Wei and Y. Long from the College of Chemistry at Sichuan University for analytic testing and valuable help.

Author information

Authors and Affiliations

Authors

Contributions

D.-G.Y. conceived, designed and supervised the study. L.S., W.W. and D.-G.Y. wrote the paper. L.S., W.W., J.-P.Y., Y.-X.J., M.-K.W., H.-P.Z., S.-S.Y. and L.-L.L. performed the experiments and mechanistic studies. L.S. and W.W. contributed equally to this work. All authors contributed to the analysis and interpretation of the data.

Corresponding author

Correspondence to Da-Gang Yu.

Ethics declarations

Competing interests

The authors declare the following competing financial interest(s): two Chinese Patents on this work have been applied for with the numbers 202111106015.2 (D.-G.Y., L.S., M.-K.W. and Y.-X.J.) and 202210530049.2 (D.-G.Y., W.W., J.-P.Y., L.S., H.-P.Z., S.-S.Y. and L.-L.L.).

Peer review

Peer review information

Nature Catalysis thanks Zachary K. Wickens, Liangnian He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, references, Figs. 1–40 and Tables 1–10.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Wang, W., Yue, JP. et al. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nat Catal 5, 832–838 (2022). https://doi.org/10.1038/s41929-022-00841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00841-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing