Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation

Abstract

Copper-based catalysts for the hydrogenation of CO2 to methanol have attracted much interest. The complex nature of these catalysts, however, renders the elucidation of their structure–activity properties difficult. Here we report a copper-based catalyst with isolated active copper sites for the hydrogenation of CO2 to methanol. It is revealed that the single-atom Cu–Zr catalyst with Cu1–O3 units contributes solely to methanol synthesis around 180 °C, while the presence of small copper clusters or nanoparticles with Cu–Cu structural patterns are responsible for forming the CO by-product. Furthermore, the gradual migration of Cu1–O3 units with a quasiplanar structure to the catalyst surface is observed during the catalytic process and accelerates CO2 hydrogenation. The highly active, isolated copper sites and the distinguishable structural pattern identified here extend the horizon of single-atom catalysts for applications in thermal catalytic CO2 hydrogenation and could guide the further design of high-performance copper-based catalysts to meet industrial demand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of different Cu/ZrO2 catalysts.
Fig. 2: Catalytic performance of different copper-based catalysts.
Fig. 3: Electronic property and structure of CAZ-1.
Fig. 4: Morphology and crystal structure of different Cu/a-ZrO2 catalysts.
Fig. 5: Migration of Cuδ+ species to the surface.
Fig. 6: Characterization and evolution of reactive intermediates.
Fig. 7: Mechanism analysis of CO2 hydrogenation to CH3OH/CO on isolated Cuδ+ (1 < δ < 2) cation.
Fig. 8: Schematic diagram for CO2 hydrogenation reaction on different types of copper species.

Similar content being viewed by others

Data availability

Data presented in the main figures of the manuscript and Supplementary Information are publicly available through the Zenodo repository (https://zenodo.org/deposit/6874758); all other relevant raw data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The software code of LASP and NN potential used within the article is available from the corresponding author upon request or on the website http://www.lasphub.com.

References

  1. Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    CAS  Google Scholar 

  2. Jenkinson, D. S., Adams, D. E. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991).

    CAS  Google Scholar 

  3. Kang, X. et al. Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal–organic framework cathode. Chem. Sci. 7, 266–273 (2016).

    CAS  PubMed  Google Scholar 

  4. Zhong, J. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).

    CAS  PubMed  Google Scholar 

  5. Yao, B. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe–Mn–K catalyst. Nat. Commun. 11, 6395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, J. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 4, 242–250 (2021).

    CAS  Google Scholar 

  7. Tan, L. et al. Development of soluble UiO-66 to improve photocatalytic CO2 reduction. Catal. Today https://doi.org/10.1016/j.cattod.2022.05.001 (2022).

    Article  Google Scholar 

  8. Ferri, P. et al. Chemical and structural parameter connecting cavity architecture, confined hydrocarbon pool species, and MTO product selectivity in small-pore cage-based zeolites. ACS Catal. 9, 11542–11551 (2019).

    CAS  Google Scholar 

  9. Ilias, S. & Bhan, A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal. 3, 18–31 (2013).

    CAS  Google Scholar 

  10. Tan, L. et al. Bifunctional capsule catalyst of Al2O3@Cu with strengthened dehydration reaction field for direct synthesis of dimethyl ether from syngas. Ind. Eng. Chem. Res. 58, 22905–22911 (2019).

    CAS  Google Scholar 

  11. Tan, L. et al. Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chem. Sci. 11, 4097–4105 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan, L. et al. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation. Fuel Process. Technol. 196, 106174 (2019).

    CAS  Google Scholar 

  13. Ma, S., Huang, S.-D. & Liu, Z.-P. Dynamic coordination of cations and catalytic selectivity on zinc–chromium oxide alloys during syngas conversion. Nat. Catal. 2, 671–677 (2019).

    CAS  Google Scholar 

  14. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  PubMed  Google Scholar 

  15. Beck, A. et al. Following the structure of copper–zinc–alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 4, 488–497 (2021).

    CAS  Google Scholar 

  16. Shi, Z. et al. CO2 hydrogenation to methanol over Cu–In intermetallic catalysts: effect of reduction temperature. J. Catal. 379, 78–89 (2019).

    CAS  Google Scholar 

  17. Li, K. & Chen, J. G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS Catal. 9, 7840–7861 (2019).

    CAS  Google Scholar 

  18. Samson, K. et al. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal. 4, 3730–3741 (2014).

    CAS  Google Scholar 

  19. Wu, C. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 11, 5767 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bahruji, H. et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 343, 133–146 (2016).

    CAS  Google Scholar 

  21. Wang, J. et al. A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Martin, O. et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew. Chem. Int. Ed. 55, 6261–6265 (2016).

    CAS  Google Scholar 

  23. Wang, J. et al. High-performance MaZrOx (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol. ACS Catal. 9, 10253–10259 (2019).

    CAS  Google Scholar 

  24. Sharafutdinov, I. et al. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J. Catal. 320, 77–88 (2014).

    CAS  Google Scholar 

  25. Kong, H., Li, H.-Y., Lin, G.-D. & Zhang, H.-B. Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol. Catal. Lett. 141, 886 (2011).

    CAS  Google Scholar 

  26. Bai, S., Shao, Q., Feng, Y., Bu, L. & Huang, X. Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum–cobalt nanowires. Small 13, 1604311 (2017).

    Google Scholar 

  27. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    CAS  PubMed  Google Scholar 

  28. Yu, J. et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 10, 14694–14706 (2020).

    CAS  Google Scholar 

  29. Yang, H. et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem. Int. Ed. 57, 1836–1840 (2018).

    CAS  Google Scholar 

  30. Karelovic, A. & Ruiz, P. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catal. Sci. Technol. 5, 869–881 (2015).

    CAS  Google Scholar 

  31. Rong, W. et al. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem. Int. Ed. 60, 466–472 (2021).

    CAS  Google Scholar 

  32. Zhu, Y. et al. Copper–zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nat. Commun. 11, 5849 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, H. et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 4, 860–871 (2021).

    CAS  Google Scholar 

  34. Tada, S. et al. Design of interfacial sites between Cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation. ACS Catal. 8, 7809–7819 (2018).

    CAS  Google Scholar 

  35. Tada, S. et al. Cu species incorporated into amorphous ZrO2 with high activity and selectivity in CO2-to-methanol hydrogenation. J. Phys. Chem. C. 122, 5430–5442 (2018).

    CAS  Google Scholar 

  36. Ma, Y. et al. Reactivity of a zirconia–copper inverse catalyst for CO2 hydrogenation. J. Phys. Chem. C. 124, 22158–22172 (2020).

    CAS  Google Scholar 

  37. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Google Scholar 

  38. Nguyen, L. et al. Ir1Znn bimetallic site for efficient production of hydrogen from methanol. ACS Sustain. Chem. Eng. 7, 18793–18800 (2019).

    Google Scholar 

  39. Tang, Y. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 141, 7283–7293 (2019).

    CAS  PubMed  Google Scholar 

  40. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    CAS  PubMed  Google Scholar 

  41. Ye, X. et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1–In2O3 single-atom catalyst. J. Am. Chem. Soc. 142, 19001–19005 (2020).

    CAS  PubMed  Google Scholar 

  42. Han, Z., Tang, C., Wang, J., Li, L. & Li, C. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. J. Catal. 394, 236–244 (2021).

    CAS  Google Scholar 

  43. Witoon, T., Chalorngtham, J., Dumrongbunditkul, P., Chareonpanich, M. & Limtrakul, J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem. Eng. J. 293, 327–336 (2016).

    CAS  Google Scholar 

  44. Chen, C. et al. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water–gas-shift performance. Int. J. Hydrog. Energy 39, 317–324 (2014).

    CAS  Google Scholar 

  45. Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

    CAS  PubMed  Google Scholar 

  46. Wang, L.-C. et al. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique. J. Phys. Chem. C. 111, 16549–16557 (2007).

    CAS  Google Scholar 

  47. Velu, S., Suzuki, K., Gopinath, C. S., Yoshida, H. & Hattori, T. XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys. Chem. Chem. Phys. 4, 1990–1999 (2002).

    CAS  Google Scholar 

  48. Qian, J. et al. Exploration of CeO2–CuO quantum dots in situ grown on graphene under hypha assistance for highly efficient solar-driven hydrogen production. Inorg. Chem. 57, 14532–14541 (2018).

    CAS  PubMed  Google Scholar 

  49. Yuan, L. et al. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 9, 4824–4833 (2019).

    CAS  Google Scholar 

  50. Qiu, X. et al. Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments. ACS Nano 6, 1609–1618 (2012).

    CAS  PubMed  Google Scholar 

  51. Yang, J. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143, 14530–14539 (2021).

    CAS  PubMed  Google Scholar 

  52. Nosaka, Y., Takahashi, S., Sakamoto, H. & Nosaka, A. Y. Reaction mechanism of Cu(II)-grafted visible-light responsive TiO2 and WO3 photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry. J. Phys. Chem. C 115, 21283–21290 (2011).

    CAS  Google Scholar 

  53. Chusuei, C. C., Brookshier, M. A. & Goodman, D. W. Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size. Langmuir 15, 2806–2808 (1999).

    CAS  Google Scholar 

  54. Sato, A. G. et al. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion. J. Catal. 307, 1–17 (2013).

    CAS  Google Scholar 

  55. Lamberti, C. et al. XAFS, IR, and UV–vis study of the CuI environment in CuI–ZSM-5. J. Phys. Chem. B 101, 344–360 (1997).

    CAS  Google Scholar 

  56. Zhang, Z. et al. Transfer hydrogenation of fatty acids on Cu/ZrO2: demystifying the role of carrier structure and metal–support interface. ACS Catal. 10, 9098–9108 (2020).

    CAS  Google Scholar 

  57. Cui, G. et al. ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbon–oxygen bond hydrogenation. Appl. Catal. B 280, 119406 (2021).

    CAS  Google Scholar 

  58. Gao, J. et al. Cu2In nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol. Ind. Eng. Chem. Res. 59, 12331–12337 (2020).

    CAS  Google Scholar 

  59. Zhang, Z. et al. The most active Cu facet for low-temperature water gas shift reaction. Nat. Commun. 8, 488 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Ladera, R. et al. Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Appl. Catal. B 142-143, 241–248 (2013).

    CAS  Google Scholar 

  61. Zhang, X. et al. Reaction-driven surface reconstruction of ZnAl2O4 boosts the methanol selectivity in CO2 catalytic hydrogenation. Appl. Catal. B 284, 119700 (2021).

    CAS  Google Scholar 

  62. Yan, G. et al. Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nat. Catal. 5, 119–127 (2022).

    Google Scholar 

  63. Dandekar, A. & Vannice, M. A. Determination of the dispersion and surface oxidation states of supported Cu catalysts. J. Catal. 178, 621–639 (1998).

    CAS  Google Scholar 

  64. Pokrovski, K., Jung, K. T. & Bell, A. T. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 17, 4297–4303 (2001).

    CAS  Google Scholar 

  65. Yang, C. et al. Strong electronic oxide–support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 142, 19523–19531 (2020).

    CAS  PubMed  Google Scholar 

  66. Wang, Y. et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu–ZnO–ZrO2. Chem 6, 419–430 (2020).

    CAS  Google Scholar 

  67. Li, H. et al. CO2 activation on ultrathin ZrO2 film by H2O co-adsorption: in situ NAP-XPS and IRAS studies. Surf. Sci. 679, 139–146 (2019).

    CAS  Google Scholar 

  68. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  PubMed  Google Scholar 

  69. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  70. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  71. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  72. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Google Scholar 

  73. Huang, S.-D., Shang, C., Kang, P.-L., Zhang, X.-J. & Liu, Z.-P. LASP: fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 9, e1415 (2019).

    CAS  Google Scholar 

  74. Guan, S.-H., Zhang, K.-X., Shang, C. & Liu, Z.-P. Stability and anion diffusion kinetics of yttria-stabilized zirconia resolved from machine learning global potential energy surface exploration. J. Chem. Phys. 152, 094703 (2020).

    CAS  PubMed  Google Scholar 

  75. Ma, S., Shang, C., Wang, C.-M. & Liu, Z.-P. Thermodynamic rules for zeolite formation from machine learning based global optimization. Chem. Sci. 11, 10113–10118 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guan, S.-H., Shang, C., Huang, S.-D. & Liu, Z.-P. Two-stage solid-phase transition of cubic ice to hexagonal ice: structural origin and kinetics. J. Phys. Chem. C 122, 29009–29016 (2018).

    CAS  Google Scholar 

  77. Huang, S.-D., Shang, C., Zhang, X.-J. & Liu, Z.-P. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant numbers 22172032, 21902027, 51701201 and U19B2003, the National Key Research and Development Program of China under grant number 2018YFA0208600, the Natural Science Foundation of Fujian Province under grant numbers 2020J05121 and 2020J01443, and the DNL Cooperation Fund, CAS (DNL201903). The X-ray experiment was supported by BL14W1, Shanghai Synchrotron Radiation Facility (j21sr0041). We thank the staff at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility and M. Shakouri at the Canadian Light Source for assistance with the EXAFS and XANES measurements.

Author information

Authors and Affiliations

Authors

Contributions

L.T. conceived and designed the experiments. H.Z. performed the catalyst synthesis, characterization and performance experiments. Z.L. and S.M. contributed to the DFT calculation and wrote the related section of the manuscript. R.Y., K.X., Y.C., K.J., Y.F., C.Z. and X.L. assisted with the synthesis and performance testing of the catalysts. Y.T. and L.W. helped to analyse the XPS and XAS data. Q.J. conducted the HAADF-STEM experiments. P.H. and Y.W. assisted with the in situ DRIFT experiments. Data were discussed among all coauthors. L.T. and H.Z. wrote the manuscript.

Corresponding authors

Correspondence to Zhipan Liu or Li Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Xiaodong Wen, Shohei Tada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–33 and Tables 1–9.

Supplementary Data 1

All the relevant structure of CAZ-1.

Supplementary Data 2

Gibbs free energy profile of CO2 hydrogenation to CH3OH/CO for CAZ-1 catalyst.

Supplementary Data 3

The variations of reaction intermediates concentrations during microkinetics simulation on CAZ-1 catalyst.

Supplementary Data 4

The variations of reaction rate during microkinetics simulation on CAZ-1 catalyst.

Supplementary Data 5

Source data of Supplementary Information.

Source data

Source Data Fig. 1

HAADF-STEM and TEM images, k2-weighted Fourier transform spectra and wavelet transform spectroscopy.

Source Data Fig. 2

Activity

Source Data Fig. 3

Cu K-edge XANES spectra, first derivative of the XANES spectra and fitting results of k2-weighted EXAFS data.

Source Data Fig. 4

HAADF-STEM images and in situ XRD.

Source Data Fig. 5

TOF-SIMS images and semiquantitative analysis.

Source Data Fig. 6

In situ DRIFT.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Yu, R., Ma, S. et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 5, 818–831 (2022). https://doi.org/10.1038/s41929-022-00840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00840-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing