Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ensemble effect for single-atom, small cluster and nanoparticle catalysts

An Author Correction to this article was published on 14 October 2022

This article has been updated

Abstract

A large family of heterogeneous catalytic reactions require active sites with more than one metal atom, that is, an ensemble of metal atoms. The ensemble requirement, which refers to the minimum number of metal atoms that are needed to catalyse a reaction with optimal efficiency, is a useful metric to evaluate the effectiveness of catalysts for reactions with different site requirements. In this Review, we revisit the traditional ensemble effect and lay out the principles for its incorporation within efficient metal catalysts. Single-atom catalysts can also be described through the ensemble effect theory, as the coordination groups of single-atom catalysts constitute an ensemble that is vital for their reactivity. The understanding of the ensemble requirement for metal catalysts provides insights into catalyst design with both optimized activity and atomic efficiency, and contributes to the development of sustainable heterogeneous catalytic transformations.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reactions favoured by catalysts with PMEs and single metal atoms.
Fig. 2: Catalyst design based on the PME effect in ammonia synthesis with Ru catalysts as an example.
Fig. 3: Composition and classification of the HAEs.
Fig. 4: Catalyst design based on the HAE effect for complex reactions.

Change history

References

  1. Taylor, H. S. A theory of catalytic surface. Proc. R. Soc. Lond. A 108, 105–111 (1925).

    Article  CAS  Google Scholar 

  2. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem 6, 89–111 (2022). The authors introduce the historical understanding of active sites in heterogeneous catalysis, analyse the functions of different types of active sites and give prospects for the design of active sites.

    Article  Google Scholar 

  3. Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018).

    Article  CAS  Google Scholar 

  4. Hoffman, A. S., Fang, C. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Andersson, M. P. et al. Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J. Catal. 255, 6–19 (2008).

    Article  CAS  Google Scholar 

  6. Lauritsen, J. V., Vang, R. T. & Besenbacher, F. From atom-resolved scanning tunneling microscopy (STM) studies to the design of new catalysts. Catal. Today 111, 34–43 (2006).

    Article  CAS  Google Scholar 

  7. Schwartz, T. J. et al. Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals. Angew. Chem. Int. Ed. 53, 12718–12722 (2014).

    Article  CAS  Google Scholar 

  8. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Li, W. et al. Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 139, 2267–2276 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, L. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Bara, C. et al. Aqueous-phase preparation of model HDS catalysts on planar alumina substrates: support effect on Mo adsorption and sulfidation. J. Am. Chem. Soc. 137, 15915–15928 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ye, T. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Qi, J. et al. Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts. J. Am. Chem. Soc. 142, 14178–14189 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Somorjai, G. A. & Carrazza, J. Structure sensitivity of catalytic reactions. Ind. Eng. Chem. Fund. 25, 63–69 (1986).

    Article  CAS  Google Scholar 

  16. Wachs, I. E. Number of surface sites and turnover frequencies for oxide catalysts. J. Catal. 405, 462–472 (2022).

    Article  CAS  Google Scholar 

  17. Dong, C. et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS Catal. 10, 11011–11045 (2020).

    Article  CAS  Google Scholar 

  18. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005). The authors perform DFT calculations to predict the reaction rates of N2 reduction on Ru particle catalysts, in which Ru particles larger than 2 nm are able to provide step sites for N2 dissociation.

    Article  CAS  PubMed  Google Scholar 

  19. Peterson, A. A. et al. Finite-size effects in O and CO adsorption for the late transition metals. Top. Catal. 55, 1276–1282 (2012).

    Article  CAS  Google Scholar 

  20. Sachtler, W. M. H. & van Santen, R. A. Surface composition and selectivity of alloy catalysts. Adv. Catal. 26, 69–119 (1977). The authors summarize the ensemble effect for different chemical reactions on the surface of a metal alloy, one of the earliest research papers on the ensemble effect.

    CAS  Google Scholar 

  21. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, C. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 5, 485–493 (2022).

    Article  CAS  Google Scholar 

  23. Peng, M. et al. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 7, 262–273 (2021). Fully exposed metal clusters not only adapt to the ensemble requirement for many reactions, but also ensure a high metal utilization and have more types of surface sites.

    Article  CAS  PubMed  Google Scholar 

  24. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009).

    Article  PubMed  Google Scholar 

  25. Den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

    Article  Google Scholar 

  26. Jacobsen, C. J. H. et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A: Chem. 163, 19–26 (2000).

    Article  CAS  Google Scholar 

  27. Newton, M. A., Knorpp, A. J., Sushkevich, V. L., Palagin, D. & van Bokhoven, J. A. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem. Soc. Rev. 49, 1449–1486 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Woertink, J. S. A. [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Guan, E. et al. MgO-supported iridium metal pair-site catalysts are more active and resistant to CO poisoning than analogous single-site catalysts for ethylene hydrogenation and hydrogen–deuterium exchange. ACS Catal. 9, 9545–9553 (2019).

    Article  CAS  Google Scholar 

  31. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Masson, A. et al. Intrinsic size effect of platinum particles supported on plasma-grown amorphous alumina in the hydrogenation of ethylene. Surf. Sci. 173, 479–497 (1986).

    Article  CAS  Google Scholar 

  33. Zhang, X. et al. Structure sensitivity of n-butane hydrogenolysis on supported Ir catalysts. J. Catal. 394, 376–386 (2021).

    Article  CAS  Google Scholar 

  34. Zhang, S. et al. Insights into the mechanism of n-hexane reforming over a single-site platinum catalyst. J. Am. Chem. Soc. 142, 16533–16537 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    Article  CAS  Google Scholar 

  37. Giannakakis, G. et al. NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top. Catal. 61, 475–486 (2018).

    Article  CAS  Google Scholar 

  38. Ouyang, M. et al. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat. Commun. 12, 1549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mavrikakis, M. & Barteau, M. A. Oxygenate reaction pathways on transition metal surfaces. J. Mol. Catal. A: Chem. 131, 135–147 (1998).

    Article  CAS  Google Scholar 

  40. Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications (Wiley & Sons, Inc., 1983).

  41. Lei, G. & Sachtler, W. M. H. H/D exchange of cyclopentane of Pt/mordenites: probing the monoatomic Pt sites. J. Catal. 140, 601–611 (1993). Taking advantage of the fact that a single-atom Pt catalyst cannot complete multiple H–D exchanges in cyclopentane, Pt ensembles and single Pt sites are clearly distinguished by the different results in the H–D exchange experiments of cyclopentane.

    Article  CAS  Google Scholar 

  42. Zholobenko, V., Lei, G., Carvill, B. T., Lerner, B. A. & Sachtler, W. M. H. Identification of isolated Pt atoms in H-mordenite. J. Chem. Soc. Faraday Trans. 90, 233–238 (1994).

    Article  CAS  Google Scholar 

  43. Campbell, C. T. et al. Probing ensemble effects in surface reactions. 1. Site-size requirements for the dehydrogenation of cyclic hydrocarbons on Pt(111) revealed by bismuth site blocking. J. Phys. Chem. 93, 806–814 (1989).

    Article  CAS  Google Scholar 

  44. Desai, P. H. & Richardson, J. T. Crystallite size effects in nickel catalysts: cyclohexane dehydrogenation and hydrogenolysis. J. Catal. 98, 392–400 (1986).

    Article  CAS  Google Scholar 

  45. Shi, H., Li, X., Haller, G. L., Gutiérrez, O. Y. & Lercher, J. A. Active sites and reactive intermediates in the hydrogenolytic cleavage of C–C bonds in cyclohexane over supported iridium. J. Catal. 295, 133–145 (2012).

    Article  CAS  Google Scholar 

  46. Deng, Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 144, 3535–3542 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Sachtler, W. M. H. in Handbook of Heterogeneous Catalysis Ch. 5 (eds Ertl, G. et al.) 1585–1593 (Wiley-VCH, 2008).

  48. Che, M. & Bennett, C. O. The influence of particle size on catalytic properties of supported metals. Adv. Catal. 36, 55–172 (1989).

    CAS  Google Scholar 

  49. Liu, P. & Nørskov, J. K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3, 3814–3818 (2001).

    Article  CAS  Google Scholar 

  50. Nilsson, A., Pettersson, L. G. M. & Nørskov J. K. Chemical Bonding at Surfaces and Interfaces (Elsevier, 2007).

  51. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding, K. et al. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Heiz, U., Sanchez, A., Abbet, S. & Schnerder, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).

    Article  CAS  Google Scholar 

  54. Bamwenda, G. R., Tsubota, S., Nakamura, T. & Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 44, 83–87 (1997).

    Article  CAS  Google Scholar 

  55. Zhou, X. et al. Stable Pt single atoms and nanoclusters on ultrathin CuO film and their performances in CO oxidation. J. Phys. Chem. C 120, 1709–1715 (2016).

    Article  CAS  Google Scholar 

  56. Maurer, F. et al. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 3, 824–833 (2020). In situ EXAFS is used to reveal the dynamics of single-atom Pt/CeO2 catalyst during CO oxidation, in which the catalytically active species are verified to be Pt ensembles rather than single-atom Pt.

    Article  CAS  Google Scholar 

  57. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Muravev, V. et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 4, 469–478 (2021).

    Article  CAS  Google Scholar 

  59. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, B., Wei, K., Lin, J. & Ni, J. Effect of treatment conditions on ruthenium particle size and ammonia synthesis activity of ruthenium catalyst. Catal. Commun. 39, 14–19 (2013).

    Article  CAS  Google Scholar 

  61. Li, Z. et al. Ammonia synthesis on graphitic-nanofilament supported Ru catalysts. J. Mol. Catal. A: Chem. 211, 103–109 (2004).

    Article  CAS  Google Scholar 

  62. Ishikawa, A., Doi, T. & Nakai, H. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: a density functional theory analysis. J. Catal. 357, 213–222 (2018).

    Article  Google Scholar 

  63. Van Hardeveld, R. & Hartog, F. The statistics of surface atoms and surface sites on metal crystals. Surf. Sci. 15, 189–230 (1969).

    Article  Google Scholar 

  64. Zhang, B., Su, H., Liu, J. & Li, W. Interplay between site activity and density of BCC iron for ammonia synthesis based on first-principles theory. ChemCatChem 11, 1928–1934 (2019).

    Article  CAS  Google Scholar 

  65. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Article  Google Scholar 

  68. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Nie, L. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Lin, L. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 143, 309–317 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017). The synergy between α-MoC support and atomic Pt sites makes it possible to dissociate water on α-MoC and activate methanol on Pt, to achieve an outstanding activity of methanol-water reforming at low temperature.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, A. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019).

    Article  CAS  Google Scholar 

  73. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Kahlich, M. J., Gasteiger, H. A. & Behm, R. J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal. 171, 93–105 (1997).

    Article  CAS  Google Scholar 

  75. Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010). Na+ additive in Pt/SiO2 catalyst assists the dissociation of water and provides a large amount of OH group, which helps to activate CO on Pt centres and leads to a much higher water-gas shift reaction activity at low temperatures as compared with that of the Pt/SiO2 catalyst with no alkali metal additives.

    Article  CAS  PubMed  Google Scholar 

  77. Yang, M. et al. Catalytically active Au-O(OH)x species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Qin, R. et al. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 3, 703–709 (2020).

    Article  CAS  Google Scholar 

  79. Wang, J. et al. N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 10, 2754–2761 (2020).

    Article  CAS  Google Scholar 

  80. Fu, J. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 11, 1952–1961 (2021).

    Article  CAS  Google Scholar 

  81. Aich, P. et al. Single-atom alloy Pd–Ag catalyst for selective hydrogenation of acrolein. J. Phys. Chem. C 119, 18140–18148 (2015).

    Article  CAS  Google Scholar 

  82. Liu, P. & Zheng, N. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev. 5, 636–638 (2018).

    Article  CAS  Google Scholar 

  83. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Vercammen, J. et al. Shape-selective C–H activation of aromatics to biarylic compounds using molecular palladium in zeolites. Nat. Catal. 3, 1002–1009 (2020).

    Article  CAS  Google Scholar 

  85. Tian, S. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pan, Y. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gan, T. et al. Facile synthesis of kilogram-scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustainable Chem. Eng. 8, 8692–8699 (2020).

    Article  CAS  Google Scholar 

  88. Shimizu, K., Miyamoto, Y. & Satsuma, A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 270, 86–94 (2010).

    Article  CAS  Google Scholar 

  89. Boronat, M. et al. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J. Am. Chem. Soc. 129, 16230–16237 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Zečević, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Resasco, J. & Christopher, P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J. Phys. Chem. Lett. 11, 10114–10123 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  93. Feng, S. et al. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat. Commun. 10, 5281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhai, H. & Alexandrova, A. N. Fluxionality of catalytic clusters: when it matters and how to address it. ACS Catal. 7, 1905–1911 (2017).

    Article  CAS  Google Scholar 

  95. Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19450–19459 (2020).

    Article  CAS  Google Scholar 

  96. Zhang, W. et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 10, 12932–12942 (2020).

    Article  CAS  Google Scholar 

  97. Ledesma, C., Yang, J., Chen, D. & Holmen, A. Recent approaches in mechanistic and kinetic studies of catalytic reactions using SSITKA technique. ACS Catal. 4, 4527–4547 (2014).

    Article  CAS  Google Scholar 

  98. Harding, D. J. et al. Ion and velocity map imaging for surface dynamics and kinetics. J. Chem. Phys. 147, 013939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Borodin, D. et al. Measuring transient reaction rates from nonstationary catalysts. ACS Catal. 10, 14056–14066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zaera, F. Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces. Surf. Sci. Rep. 72, 59–104 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Key R&D Program of China (2021YFA1501100), the Natural Science Foundation of China (21725301, 21932002, 22005007 and 21821004), and the China Petrochemical Corporation (Sinopec Group) (project no. 122085). D.M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE. Y.G. acknowledges support from the China Postdoctoral Science Foundation (no. 2020M680195) and Beijing Molecular Sciences Junior Fellow Program.

Author information

Authors and Affiliations

Authors

Contributions

Y.G., M.W. and D.M. wrote the first draft of the paper, and Q.Z. and D.X. revised the manuscript. Specifically, D.M. and Q.Z. drew the outline of the manuscript, M.W. and Y.G. wrote the PME effect part and Y.G. wrote the HAE effect part. The rest of the article was written by all the authors.

Corresponding author

Correspondence to Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Abhaya Datye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, M., Zhu, Q. et al. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat Catal 5, 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00839-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing