Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode

Abstract

Electrochemical valorization of surplus biomass-derived feedstocks, such as glycerol, into high-value chemicals offers a sustainable route for utilization of biomass resources and decarbonization of chemical manufacturing; however, glycerol is typically valorized solely via anodic oxidation, with lower-value products such as hydrogen gas generated at the cathode. Here, we establish the efficient cathodic valorization of glycerol to the desirable C3 oxidation products via the electro-Fenton process at a stable NiSe2 cathode, built upon the theoretical understanding and experimental demonstration of the high selectivity and stability of NiSe2 toward acidic H2O2 electrosynthesis. A proof-of-concept linear paired electrochemical process for concurrent valorization of glycerol into the same oxidation products at both NiSe2 cathode and Pt anode achieves high selectivity for value-added C3 products and high glycerol conversion with little external energy input needed, when the electro-Fenton generation of hydroxyl radicals is carefully controlled. This conceptual strategy of linear pairing is generalizable for enabling atom-efficient electro-refinery of diverse biomass-derived feedstocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different pairing strategies for electrochemical valorization of glycerol.
Fig. 2: Computations of ORR energetics and surface stability of c-NiSe2 versus c-CoSe2.
Fig. 3: Electrocatalytic properties and stability for acidic H2O2 electrosynthesis.
Fig. 4: Glycerol valorization enabled by the electro-Fenton process at the NiSe2 cathode.
Fig. 5: Linear paired glycerol valorization at NiSe2 cathode and Pt anode.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the article and Supplementary Information. Source data are provided with this paper. Any other relevant data are also available from the corresponding authors upon reasonable request.

References

  1. Luna, P. D. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. Engl. 60, 19572–19590 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Lucas, F. W. S. et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application. ACS Energy Lett. 6, 1205–1270 (2021).

    Article  CAS  Google Scholar 

  4. Werpy, T. & Petersen, G. Top Value Added Chemicals from Biomass Technical Report (US Department of Energy, 2004); https://doi.org/10.2172/926125

  5. Da Silva Ruy, A. D., Ferreira, A. L. F., Bresciani, A. É., de Brito Alves, R. M. & Pontes, L. A. M. in Biotechnological Applications of Biomass (eds Peixoto Basso, T. et al.) Ch. 11 (IntechOpen, 2021); https://www.intechopen.com/chapters/73542

  6. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M. & Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. Engl. 46, 4434–4440 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Katryniok, B. et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 13, 1960–1979 (2011).

    Article  CAS  Google Scholar 

  8. Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article  CAS  Google Scholar 

  9. Simões, M., Baranton, S. & Coutanceau, C. Electrochemical valorisation of glycerol. ChemSusChem 5, 2106–2124 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Li, T. & Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 14, 1472–1495 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Kwon, Y., Schouten, K. J. P. & Koper, M. T. M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3, 1176–1185 (2011).

    Article  CAS  Google Scholar 

  12. Kwon, Y., Birdja, Y., Spanos, I., Rodriguez, P. & Koper, M. T. M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2, 759–764 (2012).

    Article  CAS  Google Scholar 

  13. Lee, S. et al. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chem. 18, 2877–2887 (2016).

    Article  CAS  Google Scholar 

  14. Fan, L. et al. Recent progress in electrocatalytic glycerol oxidation. Energy Technol. 9, 2000804 (2021).

    Article  CAS  Google Scholar 

  15. Li, Y., Wei, X., Chen, L., Shi, J. & He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han, X. et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 10, 6741–6752 (2020).

    Article  CAS  Google Scholar 

  17. Simões, M., Baranton, S. & Coutanceau, C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B 93, 354–362 (2010).

    Article  CAS  Google Scholar 

  18. Chen, Y. X. et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5, 4036 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Dagdougui, H., Sacile, R., Bersani, C. & Ouammi, A. in Hydrogen Infrastructure for Energy Applications (eds Dagdougui, H. et al.) Ch. 2 (Academic Press, 2018).

  20. Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    Article  CAS  Google Scholar 

  22. Yadegari, H. et al. Glycerol oxidation pairs with carbon monoxide reduction for low-voltage generation of C2 and C3 product streams. ACS Energy Lett. 6, 3538–3544 (2021).

    Article  CAS  Google Scholar 

  23. Li, R., Xiang, K., Peng, Z., Zou, Y. & Wang, S. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode. Adv. Energy Mater. 11, 2102292 (2021).

    Article  CAS  Google Scholar 

  24. Aust, N. & Kirste, A. in Encyclopedia of Applied Electrochemistry (eds Kreysa, G. et al.) 1505–1510 (Springer, 2014).

  25. Ibanez, J. G., Frontana-Uribe, B. A. & Vasquez-Medrano, R. Paired electrochemical processes: overview, systematization, selection criteria, design strategies, and projection. J. Mex. Chem. Soc. 60, 247–260 (2016).

    CAS  Google Scholar 

  26. Strehl, J., Abraham, M. L. & Hilt, G. Linear paired electrolysis—realising 200% current efficiency for stoichiometric transformations—the electrochemical bromination of alkenes. Angew. Chem. Int. Ed. Engl. 60, 9996–10000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, S. et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018).

    Article  CAS  Google Scholar 

  28. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  29. Brillas, E., Sirés, I. & Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Teong, S. P., Li, X. & Zhang, Y. Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green. Chem. 21, 5753–5780 (2019).

    Article  CAS  Google Scholar 

  31. Moody, G. J. The action of fenton’s reagent on carbohydrates. Tetrahedron 19, 1705–1710 (1963).

    Article  CAS  Google Scholar 

  32. Vitale, A. A., Bernatene, E. A., Vitale, M. G. & Pomilio, A. B. New insights of the Fenton reaction using glycerol as the experimental model. Effect of O2, inhibition by Mg2+, and oxidation state of Fe. J. Phys. Chem. A 120, 5435–5445 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Zeng, J. et al. Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8, 861–871 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Sheng, H. et al. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 9, 8433–8442 (2019).

    Article  CAS  Google Scholar 

  35. Sheng, H. et al. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 13, 4189–4203 (2020).

    Article  CAS  Google Scholar 

  36. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Siahrostami, S. et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 10, 7495–7511 (2020).

    Article  CAS  Google Scholar 

  38. Pourbaix diagram. The Materials Project https://legacy.materialsproject.org/#apps/pourbaixdiagram/ (accessed December 2021).

  39. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal—amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    Article  CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865; erratum Phys. Rev. Lett. 78, 1396 (1997).

    CAS  Google Scholar 

  49. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  50. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  51. Wu, X. et al. Metal organic framework derived Fe-doped CoSe2 incorporated in nitrogen-doped carbon hybrid for efficient hydrogen evolution. ACS Sustain. Chem. Eng. 6, 8672–8678 (2018).

    Article  CAS  Google Scholar 

  52. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  CAS  Google Scholar 

  54. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  55. Alchagirov, A. B., Perdew, J. P., Boettger, J. C., Albers, R. C. & Fiolhais, C. Energy and pressure versus volume: equations of state motivated by the stabilized jellium model. Phys. Rev. B 63, 224115 (2001).

    Article  CAS  Google Scholar 

  56. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  57. Henkelman, G., Jóhannesson, G. & Jónsson, H. in Theoretical Methods in Condensed Phase Chemistry (eds. Schwartz, S. D.) 269–302 (Springer, 2002).

  58. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  59. Heyden, A., Bell, A. T. & Keil, F. J. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 123, 224101 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Kästner, J. & Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 128, 014106 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  62. Bureau, C. & Lécayon, G. On a modeling of voltage-application to metallic electrodes using density functional theory. J. Chem. Phys. 106, 8821–8829 (1997).

    Article  CAS  Google Scholar 

  63. Letchworth-Weaver, K. & Arias, T. A. Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86, 075140 (2012).

    Article  CAS  Google Scholar 

  64. Duan, Z. & Henkelman, G. Theoretical resolution of the exceptional oxygen reduction activity of Au(100) in alkaline media. ACS Catal. 9, 5567–5573 (2019).

    Article  CAS  Google Scholar 

  65. Abidi, N., Lim, K. R. G., Seh, Z. W. & Steinmann, S. N. Atomistic modeling of electrocatalysis: are we there yet? WIREs Comput. Mol. Sci. 11, e1499 (2021).

    Article  CAS  Google Scholar 

  66. Hydrogen peroxide. NIST Chemistry WebBook https://webbook.nist.gov/cgi/cbook.cgi?ID=C7722841&Mask=10#Solubility (accessed December 2021).

  67. Vinogradova, O., Krishnamurthy, D., Pande, V. & Viswanathan, V. Quantifying confidence in DFT-predicted surface Pourbaix diagrams of transition-metal electrode–electrolyte interfaces. Langmuir 34, 12259–12269 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 3, 2948–2951 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Kulkarni, A., Siahrostami, S., Patel, A. & Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Ford, D. C., Nilekar, A. U., Xu, Y. & Mavrikakis, M. Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010).

    Article  CAS  Google Scholar 

  72. Bhat, K. S., Barshilia, H. C. & Nagaraja, H. S. Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrog. Energy 42, 24645–24655 (2017).

    Article  CAS  Google Scholar 

  73. Kolb, E. D. & Laudise, R. A. The solubility of trigonal Se in Na2S solutions and the hydrothermal growth of Se. J. Cryst. Growth 8, 191–196 (1971).

    Article  CAS  Google Scholar 

  74. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    Article  CAS  Google Scholar 

  76. Jiang, K. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF, grant no. CHE-1955074) for materials synthesis and electrochemical experiments (H.S., R.D.R. and S.J.) and for computational modelling (A.N.J., K.L. and J.R.S.). The calculations performed utilized computational resources from the Extreme Science and Engineering Discovery Environment supported by NSF grant no. TG-CHE120088. The Bruker AVANCE III 600 MHz NMR spectrometer was supported by National Institutes of Health grant no. S10 OK012245. The authors gratefully acknowledge use of the facilities and instrumentation at the UW-Madison Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu), partially supported by the NSF through the University of Wisconsin Materials Research Science and Engineering Center (no. DMR-1720415). We thank J. Lazarcik for help with gaining access to the ICP–MS spectrometer supported by the Water Science and Engineering Laboratory at UW-Madison. This research used resources of the APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. We thank Y. Ding for help with XAS experiments performed at APS Beamline 10-BM-B.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and S.J. designed the experiments. H.S. carried out materials synthesis, materials characterization (with the help of R.D.R.), electrochemical measurements and product analyses of glycerol valorization (with the help of H.H.). A.N.J. and J.R.S. conceived computational modelling of the catalyst. A.N.J. and K.L. performed computational modelling. H.S. and S.J. wrote the manuscript, and all authors commented on it.

Corresponding authors

Correspondence to J. R. Schmidt or Song Jin.

Ethics declarations

Competing interests

A provisional patent has been filed based on this work by some of the authors of this manuscript (H.S., A.N.J., R.D.R., K.L., J.R.S. and S.J.). The remaining author (H.H.) declares no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Chuang Peng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Notes 1–6, Tables 1–4 and references.

Supplementary Data 1

Computational data.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Janes, A.N., Ross, R.D. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat Catal 5, 716–725 (2022). https://doi.org/10.1038/s41929-022-00826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00826-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing